Abstract:
An Illuminated Windshield Wiper Nozzle is designed with a nozzle installed at the outlet of a channel inside the base. The channel is connected with the auto's pump and water tank. Water is pumped into the channel and sprays out of the nozzle. The creation features a transparent base equipped with an illuminator at front end. The above construction enables the illuminator to give light at the same time when the pump is started to spray water, thus producing a wonderful effect.
Abstract:
A new approach for creating metal pillar via structures, for multilevel metallization structures, used in the fabrication of MOSFET devices, has been developed. Consecutive metal depositions are performed, followed by a RIE procedure, used to create the desired first level metallization shape in the metallizations. Another RIE procedure than selectively forms the metal pillar via structure on the underlying first level metallization structure. Composite dielectric material, including a spin on glass layer, is used to fill the spaces between metal structures. Chemical mechanical polishing is used to create the desired planarity, followed by the construction of a second level metallization structure, contacting the underlying first level metallization structure by use of the metal pillar via structure.
Abstract:
An emergency escape apparatus for use in a car includes an elongated body and a mounting seat for receiving the elongated body. The elongated body has a head portion and a handle portion which is connected integrally to the head portion. The elongated body further has a channel which extends toward and which is communicated with the exterior of the elongated body. A rigid striking member is fixed to the head portion and has a tapered end which extends out of the head portion. A needle member is received slidably in the channel of the elongated body and has a sharp end which is extendible from and retractable into the elongated body.
Abstract:
A method for fabricating a super-junction semiconductor power device with reduced Miller capacitance includes the following steps. An N-type substrate is provided and a P-type epitaxial layer is formed on the N-type substrate. At least a trench is formed in the P-type epitaxial layer followed by forming a buffer layer on interior surface in the trench. An N-type dopant layer is filled into the trench and then the N-type dopant layer is etched to form a recessed structure at an upper portion of the trench. A gate oxide layer is formed, and simultaneously, dopants in the N-type dopant layer diffuse into the P-type epitaxial layer, forming an N-type diffusion layer. Finally, a gate conductor is filled into the recessed structure and an N-type source doped region is formed around the gate conductor in the P-type epitaxial layer.
Abstract:
A method for fabricating a semiconductor power device includes the following steps. First, a substrate having thereon at least a semiconductor layer and a pad layer is provided. Then, at least a trench is etched into the pad layer and the semiconductor layer followed by depositing a dopant source layer in the trench and on the pad layer. A process is carried out thermally driving in dopants of the dopant source layer into the semiconductor layer. A rapid thermal process is performed to mend defects in the dopant source layer and defects between the dopant source layer and the semiconductor layer. Finally, a polishing process is performed to remove the dopant source layer from a surface of the pad layer.
Abstract:
The present invention provides a method of reducing a surface doping concentration of a doped diffusion region. First, a semiconductor substrate is provided. The semiconductor substrate has the doped diffusion region disposed therein, and the doped diffusion region is in contact with a surface of the semiconductor substrate. A doping concentration of the doped diffusion region close to the surface is larger than a doping concentration of the doped diffusion region away from the surface. Then, a thermal oxidation process is performed to form an oxide layer on the surface of the semiconductor substrate. A part of the doped diffusion region in contact with the surface reacts with oxygen to form a part of the oxide layer. Then, the oxide layer is removed.
Abstract:
The present invention provides a manufacturing method of a trench type power transistor device with a super junction. First, a substrate of a first conductivity type is provided, and then an epitaxial layer of a second conductive type is formed on the substrate. Next, a through hole is formed in the epitaxial layer, and the through hole penetrates through the epitaxial layer. Two doped drain regions of the first conductivity type are then formed in the epitaxial layer respectively at two sides of the through hole, and the doped drain regions extend from a top surface of the epitaxial layer to be in contact with the substrate.
Abstract:
The present invention provides a power transistor device including a substrate, a first epitaxial layer, a doped diffusion region, a second epitaxial layer, a doped base region, and a doped source region. The substrate, the first epitaxial layer, the second epitaxial layer and the doped source region have a first conductive type, and the doped diffusion region and the doped base region have a second conductive type. The first epitaxial layer and the second epitaxial layer are sequentially disposed on the substrate, and the doped diffusion region is disposed in the first epitaxial layer. The doped base region is disposed in the second epitaxial layer and contacts the doped diffusion region, and the doped source region is disposed in the doped base region. A doping concentration of the second epitaxial layer is less than a doping concentration of the first epitaxial layer.
Abstract:
A vehicle door safety warning lamp is provided. A light source is respectively disposed on each side of a light socket, and each light source is electrically connected to a power supply device of a vehicle. A white or transparent first shade body and a colored (for example, red or yellow) second shade body cover the two sides of the light socket. When a vehicle door is opened, the light sources disposed on the two sides of the light socket emit lights at the same time, light rays from the first shade body are used to irradiate a traveling path of passengers, and light rays from the second shade body are used to warn other vehicles at the back, thereby improving the safety of the passengers when getting on and off the passenger vehicles (for example, buses or touring vehicles).
Abstract:
An exemplary phase change memory device is provided, including a substrate with a first electrode formed thereover. A first dielectric layer is formed over the first electrode and the substrate. A plurality of cup-shaped heating electrodes is respectively disposed in a portion of the first dielectric layer. A first insulating layer is formed over the first dielectric layer, partially covering the cup-shaped heating electrodes and the first dielectric layer therebetween. A second insulating layer is formed over the first dielectric layer, partially covering the cup-shaped heating electrodes and the first dielectric layer therebetween. A pair of phase change material layers is respectively disposed on opposing sidewalls of the second insulating layer and contacting with one of the cup-shaped heating electrodes. A pair of first conductive layers is formed on the second insulating layer along the second direction, respectively.