PLASMA ENHANCED DEPOSITION PROCESSES FOR CONTROLLED FORMATION OF METAL OXIDE THIN FILMS

    公开(公告)号:US20180350587A1

    公开(公告)日:2018-12-06

    申请号:US15971601

    申请日:2018-05-04

    Abstract: Methods for depositing oxide thin films, such as metal oxide, metal silicates, silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first reactant that comprises oxygen and a component of the oxide, and a second reactant comprising reactive species that does not include oxygen species. In some embodiments the plasma power used to generate the reactive species can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features. In some embodiments oxide thin films are selectively deposited on a first surface of a substrate relative to a second surface, such as on a dielectric surface relative to a metal or metallic surface.

    Method of making a resistive random access memory device
    16.
    发明授权
    Method of making a resistive random access memory device 有权
    制造电阻随机存取存储器件的方法

    公开(公告)号:US09472757B2

    公开(公告)日:2016-10-18

    申请号:US14334566

    申请日:2014-07-17

    Abstract: The disclosed technology generally relates to the field of semiconductor processing and more particularly to resistive random access memory and methods for manufacturing such memory. In one aspect, a method of fabricating a memory cell includes providing a substrate and providing a first electrode on the substrate. The method additionally includes depositing, via atomic layer deposition, a resistive switching material on the first electrode, wherein the resistive switching material comprises an oxide comprising a pnictogen chosen from the group consisting of As, Bi, Sb, and P. The resistive switching material may be doped, e.g., with Sb or an antimony-metal alloy. A second electrode may be formed over and in contact with the resistive switching material.

    Abstract translation: 所公开的技术通常涉及半导体处理领域,更具体地涉及电阻随机存取存储器以及用于制造这种存储器的方法。 一方面,一种制造存储单元的方法包括提供衬底并在衬底上提供第一电极。 该方法还包括通过原子层沉积沉积第一电极上的电阻式开关材料,其中电阻开关材料包括一种氧化物,该氧化物包括选自由As,Bi,Sb和P组成的组的pnictogen。电阻式开关材料 可以掺杂,例如用Sb或锑 - 金属合金。 第二电极可以形成在电阻开关材料之上并与电阻开关材料接触。

    METHOD OF MAKING A RESISTIVE RANDOM ACCESS MEMORY DEVICE
    17.
    发明申请
    METHOD OF MAKING A RESISTIVE RANDOM ACCESS MEMORY DEVICE 有权
    制造电阻随机访问存储器件的方法

    公开(公告)号:US20150021540A1

    公开(公告)日:2015-01-22

    申请号:US14334566

    申请日:2014-07-17

    Abstract: The disclosed technology generally relates to the field of semiconductor processing and more particularly to resistive random access memory and methods for manufacturing such memory. In one aspect, a method of fabricating a memory cell includes providing a substrate and providing a first electrode on the substrate. The method additionally includes depositing, via atomic layer deposition, a resistive switching material on the first electrode, wherein the resistive switching material comprises an oxide comprising a pnictogen chosen from the group consisting of As, Bi, Sb, and P. The resistive switching material may be doped, e.g., with Sb or an antimony-metal alloy. A second electrode may be formed over and in contact with the resistive switching material.

    Abstract translation: 所公开的技术通常涉及半导体处理领域,更具体地涉及电阻随机存取存储器以及用于制造这种存储器的方法。 一方面,一种制造存储单元的方法包括提供衬底并在衬底上提供第一电极。 该方法还包括通过原子层沉积沉积第一电极上的电阻式开关材料,其中电阻开关材料包括一种氧化物,该氧化物包括选自由As,Bi,Sb和P组成的组的pnictogen。电阻式开关材料 可以掺杂,例如用Sb或锑 - 金属合金。 第二电极可以形成在电阻开关材料之上并与电阻开关材料接触。

    ATOMIC LAYER ETCHING PROCESSES
    18.
    发明申请

    公开(公告)号:US20250037970A1

    公开(公告)日:2025-01-30

    申请号:US18790894

    申请日:2024-07-31

    Abstract: Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.

    Vapor phase deposition of organic films

    公开(公告)号:US12134108B2

    公开(公告)日:2024-11-05

    申请号:US18300748

    申请日:2023-04-14

    Abstract: Methods and apparatus for vapor deposition of an organic film are configured to vaporize an organic reactant at a first temperature, transport the vapor to a reaction chamber housing a substrate, and maintain the substrate at a lower temperature than the vaporization temperature. Alternating contact of the substrate with the organic reactant and a second reactant in a sequential deposition sequence can result in bottom-up filling of voids and trenches with organic film in a manner otherwise difficult to achieve.

Patent Agency Ranking