Abstract:
Target structures such as overlay gratings (Ta and Tb) are formed on a substrate (W) by a lithographic process. The first target is illuminated with a spot of first radiation (456a, Sa) and simultaneously the second target is illuminated with a spot of second radiation (456b, Sb). A sensor (418) detects at different locations, portions (460x−, 460x+) of said first radiation that have been diffracted in a first direction by features of the first target and portions (460y−, 460y+) of said second radiation that have been diffracted in a second direction by features of the second target. Asymmetry in X and Y directions can be detected simultaneously, reducing the time required for overlay measurements in X and Y. The two spots of radiation at soft x-ray wavelength can be generated simply by exciting two locations (710a, 710b) in a higher harmonic generation (HHG) radiation source or inverse Compton scattering source.
Abstract:
Metrology targets are formed on a substrate (W) by a lithographic process. A target (T) comprising one or more grating structures is illuminated with spatially coherent radiation under different conditions. Radiation (650) diffracted by from said target area interferes with reference radiation (652) interferes with to form an interference pattern at an image detector (623). One or more images of said interference pattern are captured. From the captured image(s) and from knowledge of the reference radiation a complex field of the collected scattered radiation at the detector. A synthetic radiometric image (814) of radiation diffracted by each grating is calculated from the complex field. From the synthetic radiometric images (814, 814′) of opposite portions of a diffractions spectrum of the grating, a measure of asymmetry in the grating is obtained. Using suitable targets, overlay and other performance parameters of the lithographic process can be calculated from the measured asymmetry.
Abstract:
Disclosed is a method of improving a measurement of a parameter of interest. The method comprises obtaining metrology data comprising a plurality of measured values of the parameter of interest, relating to one or more targets on a substrate, each measured value relating to a different measurement combination of a target of said one or more targets and a measurement condition used to measure that target and asymmetry metric data relating to asymmetry for said one or more targets. A respective relationship is determined for each of said measurement combinations relating a true value for the parameter of interest to the asymmetry metric data, based on an assumption that there is a common true value for the parameter of interest over said measurement combinations. These relationships are used to improve a measurement of the parameter of interest.
Abstract:
A metrology apparatus (302) includes a higher harmonic generation (HHG) radiation source for generating (310) EUV radiation. Operation of the HHG source is monitored using a wavefront sensor (420) which comprises an aperture array (424, 702) and an image sensor (426). A grating (706) disperses the radiation passing through each aperture so that the image detector captures positions and intensities of higher diffraction orders for different spectral components and different locations across the beam. In this way, the wavefront sensor can be arranged to measure a wavefront tilt for multiple harmonics at each location in said array. In one embodiment, the apertures are divided into two subsets (A) and (B), the gratings (706) of each subset having a different direction of dispersion. The spectrally resolved wavefront information (430) is used in feedback control (432) to stabilize operation of the HGG source, and/or to improve accuracy of metrology results.
Abstract:
Disclosed is a metrology sensor apparatus and associated method. The metrology sensor apparatus comprises an illumination system operable to illuminate a metrology mark on a substrate with illumination radiation having a first polarization state and an optical collection system configured to collect scattered radiation, following scattering of the illumination radiation by the metrology mark. The metrology mark comprises a main structure and changes, relative to the first polarization state, at least one of a polarization state of a first portion of the scattered radiation predominately resultant from scattering by the main structure and a polarization state of a second portion of radiation predominately resultant from scattering by one or more features other than the main structure, such that the polarization state of the first portion of the scattered radiation is different to the polarization state of the second portion of the scattered radiation. The metrology sensor apparatus further comprises an optical filtering system which filters out the second portion of the scattered radiation based on its polarization state.
Abstract:
An alignment sensor for a lithographic apparatus has an optical system configured to deliver, collect and process radiation selectively in a first waveband (e.g. 500-900 nm) and/or in a second waveband (e.g. 1500-2500 nm). The radiation of the first and second wavebands share a common optical path in at least some portion of the optical system, while the radiation of the first waveband is processed by a first processing sub-system and the radiation of the second waveband is processed by a second processing sub-system. The processing subsystems in one example include self-referencing interferometers. The radiation of the second waveband allows marks to be measured through an opaque layer. Optical coatings and other components of each processing sub-system can be tailored to the respective waveband, without completely duplicating the optical system.
Abstract:
An apparatus and method for estimating a parameter of a lithographic process and an apparatus and method for determining a relationship between a measure of quality of an estimate of a parameter of a lithographic process are provided. In the apparatus for estimating the parameter a processor is configured to determine a quality of the estimate of the parameter relating to the tested substrate based on a measure of feature asymmetry in the at least first features of the tested substrate and further based on a relationship determined for a plurality of corresponding at least first features of at least one further substrate representative of the tested substrate, the relationship being between a measure of quality of an estimate of the parameter relating to the at least one further substrate and a measure of feature asymmetry in the corresponding first features.
Abstract:
A lithographic apparatus comprises comprise a substrate table constructed to hold a substrate; and a sensor configured to sense a position of an alignment mark provided onto the substrate held by the substrate table. The sensor comprises a source of radiation configured to illuminate the alignment mark with a radiation beam, a detector configured to detect the radiation beam, having interacted with the alignment mark, as an out of focus optical pattern, and a data processing system. The data processing system is configured to receive image data representing the out of focus optical pattern, and process the image data for determining alignment information, comprising applying a lensless imaging algorithm to the out of focus optical pattern.
Abstract:
Disclosed is a method of performing a measurement in an inspection apparatus, and an associated inspection apparatus and HHG source. The method comprises configuring one or more controllable characteristics of at least one driving laser pulse of a high harmonic generation radiation source to control the output emission spectrum of illumination radiation provided by the high harmonic generation radiation source; and illuminating a target structure with said illuminating radiation. The method may comprise configuring the driving laser pulse so that the output emission spectrum comprises a plurality of discrete harmonic peaks. Alternatively the method may comprise using a plurality of driving laser pulses of different wavelengths such that the output emission spectrum is substantially monochromatic.
Abstract:
A lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. A lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). The lithographic apparatus has an inspection apparatus with an illumination system that utilizes illuminating radiation with a wavelength of 2-40 nm. The illumination system includes an optical element that splits the illuminating radiation into a first and a second illuminating radiation and induces a time delay to the first or the second illuminating radiation. A detector detects the radiation that has been scattered by a target structure. The inspection apparatus has a processing unit operable to control a time delay between the first scattered radiation and the second scattered radiation so as to optimize a property of the combined first and second scattered radiation.