摘要:
It is an object of the present invention to provide a sheet-shaped three-dimensional network aluminum porous body for a current collector which is suitably used for electrodes for nonaqueous electrolyte batteries and electrodes for capacitors, an electrode and a capacitor each using the same. The three-dimensional network aluminum porous body for a current collector of the present invention is a sheet-shaped three-dimensional network aluminum porous body for a current collector used for electrodes, and the aluminum porous body has been made to have an average cell diameter of 50 μm or more and 1000 μm or less in order to enhance the filling performance of an active material slurry.
摘要:
It is an object of the present invention to provide a current collector including an aluminum porous body suitable for an electrode for a nonaqueous electrolyte battery and an electrode for a capacitor electrode, and an electrode using the current collector. In the three-dimensional network aluminum porous body for a current collector of the present invention, when a sheet-shaped three-dimensional aluminum porous body is divided in the width direction into a central region and two end regions with the central region situated therebetween, the weight per unit area of aluminum in the aluminum porous body at the two end regions is larger than the weight per unit area of aluminum in the aluminum porous body at the central region.
摘要:
It is an object of the present invention to provide an electrochemical element which has a high capacity and is low in cost. The electrochemical element of the present invention is an electrochemical element including an electrode for an electrochemical element, wherein a current collector of positive electrode and/or a current collector of negative electrode is a metal porous body having continuous pores and a mixture containing an active material is filled into the continuous pores.
摘要:
It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
摘要:
It is an object of the present invention to provide an aluminum porous body for a current collector in which electric resistivity is reduced to enhance current collecting performance, and an electrode, a nonaqueous electrolyte battery, a capacitor and a lithium-ion capacitor each using the aluminum porous body for a current collector. Such a sheet-shaped three-dimensional network aluminum porous body of the present invention is a three-dimensional network aluminum porous body for a current collector including an electric resistivity in an in-plane direction and in a thickness direction of 0.5 mΩcm or less. An electrode can be configured by using the three-dimensional network aluminum porous body for a current collector, and further a nonaqueous electrolyte battery, a capacitor and a lithium-ion capacitor can be configured by using the electrode.
摘要:
The present invention provides an electrode current collector for a secondary battery or the like, wherein a compressed part for attaching a tab lead to an end part of the three-dimensional network aluminum porous body to be used as an electrode current collector of a secondary battery, a capacitor using a nonaqueous electrolytic solution or the like is formed, and a method for producing the same. That is, the present invention provides a three-dimensional network aluminum porous body for a current collector having a compressed part compressed in a thickness direction for connecting a tab lead to its end part, wherein the compressed part is formed at a central part in the thickness direction of the aluminum porous body.
摘要:
A surface of a porous resin body having a three-dimensional network structure can be plated with aluminum at a uniform thickness and thus a high-purity aluminum structure is formed. A method for producing an aluminum structure includes a step of plating a resin porous body, which has a three-dimensional network structure and has a surface that has been made electrically conductive, with aluminum in a molten-salt bath, in which the molten salt is a salt mixture of aluminum chloride and an organic salt and plating is conducted while controlling the temperature of the molten-salt bath to be 45° C. or higher and 100° C. or lower. Preferably, the molten-salt bath further contains 1,10-phenanthroline at a concentration of 0.25 g/l or more and 7 g/l or less.
摘要:
A porous metal body containing continuous pores and having a low oxygen content is provided by decomposing a porous resin body that contains continuous pores and has a layer of a metal thereon by heating the porous resin body at a temperature equal to or less than the melting point of the metal while the porous resin body is immersed in a first molten salt and a negative potential is applied to the metal layer; and a method for producing the porous metal body is provided.
摘要:
A porous metal body containing continuous pores and having a low oxygen content is provided by decomposing a porous resin body that contains continuous pores and has a layer of a metal thereon by heating the porous resin body at a temperature equal to or less than the melting point of the metal while the porous resin body is immersed in a first molten salt and a negative potential is applied to the metal layer; and a method for producing the porous metal body is provided.
摘要:
A porous metal body containing continuous pores and having a low oxygen content is provided by decomposing a porous resin body that contains continuous pores and has a layer of a metal thereon by heating the porous resin body at a temperature equal to or less than the melting point of the metal while the porous resin body is immersed in a first molten salt and a negative potential is applied to the metal layer; and a method for producing the porous metal body is provided.