摘要:
Embodiments of the present invention provide apparatus and methods for performing UV treatment and chemical treatment and/or deposition in the same chamber. One embodiment of the present invention provides a processing chamber including a UV transparent gas distribution showerhead disposed above a substrate support located in an inner volume of the processing chamber, a UV transparent window disposed above the UV transparent gas distribution showerhead, and a UV unit disposed outside the inner volume. The UV unit is configured to direct UV lights towards the substrate support through the UV transparent window and the UV transparent gas distribution showerhead.
摘要:
The present invention generally relates to methods of controlling UV lamp output to increase irradiance uniformity. The methods generally include determining a baseline irradiance within a chamber, determining the relative irradiance on a substrate corresponding to a first lamp and a second lamp, and determining correction or compensation factors based on the relative irradiances and the baseline irradiance. The lamps are then adjusted via closed loop control using the correction or compensation factors to individually adjust the lamps to the desired output. The lamps may optionally be adjusted to equal irradiances prior to adjusting the lamps to the desired output. The closed loop control ensures process uniformity from substrate to substrate. The irradiance measurement and the correction or compensation factors allow for adjustment of lamp set points due to chamber component degradation, chamber component replacement, or chamber cleaning.
摘要:
The present invention generally relates to methods of controlling UV lamp output to increase irradiance uniformity. The methods generally include determining a baseline irradiance within a chamber, determining the relative irradiance on a substrate corresponding to a first lamp and a second lamp, and determining correction or compensation factors based on the relative irradiances and the baseline irradiance. The lamps are then adjusted via closed loop control using the correction or compensation factors to individually adjust the lamps to the desired output. The lamps may optionally be adjusted to equal irradiances prior to adjusting the lamps to the desired output. The closed loop control ensures process uniformity from substrate to substrate. The irradiance measurement and the correction or compensation factors allow for adjustment of lamp set points due to chamber component degradation, chamber component replacement, or chamber cleaning.
摘要:
Embodiments of the invention generally relate to a semiconductor processing chamber and, more specifically, a heated support pedestal for a semiconductor processing chamber. In one embodiment, a pedestal for a semiconductor processing chamber is provided. The pedestal comprises a substrate support comprising a conductive material and having a support surface for receiving a substrate, a resistive heater encapsulated within the substrate support, a hollow shaft coupled to the substrate support at a first end and a mating interface at an opposing end, the hollow shaft comprising a shaft body having a hollow core, and a cooling channel assembly encircling the hollow core and disposed within the shaft body for removing heat from the pedestal via an internal cooling path, wherein the substrate support has a heat control gap positioned between the heating element and the ring-shaped cooling channel.
摘要:
Embodiments of the invention generally provide apparatuses and methods for controlling the gas flow profile within a processing chamber. In one embodiment, a processing tool includes an ultraviolet processing chamber defining a processing region, a substrate support, a window disposed between a UV radiation source and the substrate support, and a transparent showerhead disposed within the processing region between the window and the substrate support and having one or more transparent showerhead passages between upper and lower processing regions. The processing tool also includes a gas distribution ring having one or more gas distribution ring passages between a gas distribution ring inner channel and the upper processing region and a gas outlet ring positioned below the gas distribution ring, the gas outlet ring having one or more gas outlet passages between a gas outlet ring inner channel within the gas outlet ring and the lower processing region.
摘要:
A pump liner is used to direct a laminar flow of purge gas across a workpiece to remove contaminants or species outgassed or otherwise produced by the workpiece during processing. The pump liner can take the form of a ring having a plurality of injection ports, such as slits of a variety of shapes and/or sizes, opposite a plurality of receiving ports in order to provide the laminar flow. The flow of purge gas is sufficient to carry a contaminant or outgassed species from the processing chamber in order to prevent the collection of the contaminants on components of the chamber. The pump liner can be heated, via conduction and irradiation from a radiation source, for example, in order to prevent the condensation of species on the liner. The pump liner also can be anodized or otherwise processed in order to increase the emissivity of the liner.
摘要:
Embodiments of the invention generally provide apparatuses and methods for controlling the gas flow profile within a processing chamber. In one embodiment, a processing tool includes an ultraviolet processing chamber defining a processing region, a substrate support, a window disposed between a UV radiation source and the substrate support, and a transparent showerhead disposed within the processing region between the window and the substrate support and having one or more transparent showerhead passages between upper and lower processing regions. The processing tool also includes a gas distribution ring having one or more gas distribution ring passages between a gas distribution ring inner channel and the upper processing region and a gas outlet ring positioned below the gas distribution ring, the gas outlet ring having one or more gas outlet passages between a gas outlet ring inner channel within the gas outlet ring and the lower processing region.
摘要:
Embodiments described herein relate to a method for processing a substrate. In one embodiment, the method includes introducing a gas mixture comprising a hydrocarbon source and a diluent gas into a deposition chamber located within a processing system, generating a plasma from the gas mixture in the deposition chamber at a temperature between about 200° C. and about 700° C. to form a low-hydrogen content amorphous carbon layer on the substrate, transferring the substrate into a curing chamber located within the processing system without breaking vacuum, and exposing the substrate to UV radiation within the curing chamber at a curing temperature above about 200° C.
摘要:
The present invention generally relates to methods of controlling UV lamp output to increase irradiance uniformity. The methods generally include determining a baseline irradiance within a chamber, determining the relative irradiance on a substrate corresponding to a first lamp and a second lamp, and determining correction or compensation factors based on the relative irradiances and the baseline irradiance. The lamps are then adjusted via closed loop control using the correction or compensation factors to individually adjust the lamps to the desired output. The lamps may optionally be adjusted to equal irradiances prior to adjusting the lamps to the desired output. The closed loop control ensures process uniformity from substrate to substrate. The irradiance measurement and the correction or compensation factors allow for adjustment of lamp set points due to chamber component degradation, chamber component replacement, or chamber cleaning.
摘要:
A silicon dioxide layer is deposited onto a substrate using a process gas comprising BDEAS and an oxygen-containing gas such as ozone. The silicon dioxide layer can be part of an etch-resistant stack that includes a resist layer. In another version, the silicon dioxide layer is deposited into through holes to form an oxide liner for through-silicon vias.