Abstract:
During polishing of a stack of adjacent layers, a plurality of instances of a profile control algorithm are executed on a controller with different instances having different values for a control parameter. A first instance receives a sequence of characterizing values from an in-situ monitoring system during an initial time period to control a polishing parameter, and a second instance receives the sequence of characterizing values during the initial time period and a subsequent time period to control the polishing parameter. Exposure of the underlying layer is detected based on the sequence of characterizing values from the in-situ monitoring system.
Abstract:
A method of polishing a substrate includes polishing a conductive layer on the substrate at a polishing station, monitoring the layer with an in-situ eddy current monitoring system to generate a plurality of measured signals values for a plurality of different locations on the layer, generating thickness measurements the locations, and detecting a polishing endpoint or modifying a polishing parameter based on the thickness measurements. The conductive layer is formed of a first material having a first conductivity. Generating includes calculating initial thickness values based on the plurality of measured signals values and processing the initial thickness values through a neural network that was trained using training data acquired by measuring calibration substrates having a conductive layer formed of a second material having a second conductivity that is lower than the first conductivity to generated adjusted thickness values.
Abstract:
A method of polishing a layer on the substrate at a polishing station includes the actions of monitoring the layer during polishing at the polishing station with an in-situ monitoring system to generate a plurality of measured signals for a plurality of different locations on the layer; generating, for each location of the plurality of different locations, an estimated measure of thickness of the location, the generating including processing the plurality of measured signals through a neural network; and at least one of detecting a polishing endpoint or modifying a polishing parameter based on each estimated measure of thickness.
Abstract:
An apparatus for chemical mechanical polishing includes a platen having a surface to support a polishing pad and an electromagnetic induction monitoring system to generate a magnetic field to monitor a substrate being polished by the polishing pad. The electromagnetic induction monitoring system includes a core positioned at least partially in the platen and a coil wound around a portion of the core. The core includes a back portion and a multiplicity of posts extending from the back portion in a first direction normal to the surface of the platen. The core and coil are configured such that the multiplicity of posts include a first plurality of posts to provide a first magnetic polarity and a second plurality of posts to provide an opposite second magnetic polarity, and the first plurality of posts and the second plurality of posts are arranged in an alternating pattern.
Abstract:
An apparatus for chemical mechanical polishing includes a platen having a surface to support a polishing pad and an electromagnetic induction monitoring system to generate a magnetic field to monitor a substrate being polished by the polishing pad. The electromagnetic induction monitoring system includes a core positioned at least partially in the platen and a coil wound around a portion of the core. The core includes a back portion and a multiplicity of posts extending from the back portion in a first direction normal to the surface of the platen. The core and coil are configured such that the multiplicity of posts include a first plurality of posts to provide a first magnetic polarity and a second plurality of posts to provide an opposite second magnetic polarity, and the first plurality of posts and the second plurality of posts are arranged in an alternating pattern.
Abstract:
A method of controlling polishing includes storing a desired ratio representing a ratio for a clearance time of a first zone of a substrate to a clearance time of a second zone of the substrate. During polishing of a first substrate, an overlying layer is monitored, a sequence of measurements is generated, and the measurements are sorted a first group associated with the first zone of the substrate and a second group associated with the second zone on the substrate. A first time and a second time at which the overlying layer is cleared is determined based on the measurements from the first group and the second group, respectively. At least one adjusted polishing pressure is calculated for the first zone based on a first pressure applied in the first zone during polishing the first substrate, the first time, the second time, and the desired ratio.
Abstract:
A method of controlling polishing includes polishing a substrate at a first polishing station, monitoring the substrate with a first eddy current monitoring system to generate a first signal, determining an ending value of the first signal for an end of polishing of the substrate at the first polishing station, determining a first temperature at the first polishing station, polishing the substrate at a second polishing station, monitoring the substrate with a second eddy current monitoring system to generate a second signal, determining a starting value of the second signal for a start of polishing of the substrate at the second polishing station, determining a gain for the second polishing station based on the ending value, the starting value and the first temperature, and calculating a third signal based on the second signal and the gain.
Abstract:
A method of chemical mechanical polishing a substrate includes polishing a layer on the substrate at a polishing station, monitoring the layer during polishing at the polishing station with an in-situ monitoring system, the in-situ monitoring system monitoring an elongated region and generating a measured signal, computing an angle between a primary axis of the elongated region and a tangent to an edge of the substrate, modifying the measured signal based on the angle to generate a modified signal, and at least one of detecting a polishing endpoint or modifying a polishing parameter based on the modified signal.
Abstract:
An apparatus for chemical mechanical polishing includes a support for a polishing pad having a polishing surface, and an electromagnetic induction monitoring system to generate a magnetic field to monitor a substrate being polished by the polishing pad. The electromagnetic induction monitoring system includes a core and a coil wound around a portion of the core. The core includes a back portion, a center post extending from the back portion in a first direction normal to the polishing surface, and an annular rim extending from the back portion in parallel with the center post and surrounding and spaced apart from the center post by a gap. A width of the gap is less than a width of the center post, and a surface area of a top surface of the annular rim is at least two times greater than a surface area of a top surface of the center post.
Abstract:
A method of chemical mechanical polishing includes bringing a conductive layer of a substrate into contact with a polishing pad, supplying a polishing liquid to the polishing pad, generating relative motion between the substrate and the polishing pad, monitoring the substrate with an in-situ electromagnetic induction monitoring system as the conductive layer is polished to generate a sequence of signal values that depend on a thickness of the conductive layer, and determining a sequence of thickness values for the conductive layer based on the sequence of signal values. Determining the sequence of thickness values includes at least partially compensating for a contribution of the polishing liquid to the signal values.