摘要:
Methods of forming high voltage (111) silicon nano-structures are described. Those methods and structures may include forming a III-V device layer on (111) surface of a silicon fin structure, forming a 2DEG inducing polarization layer on the III-V device layer, forming a source/drain material on a portion of the III-V device layer on terminal ends of the silicon fin. A middle portion of the silicon fin structure between the source and drain regions may be removed, and backfilled with a dielectric material, and then a gate dielectric and a gate material may be formed on the III-V device layer.
摘要:
A III-N semiconductor channel is compositionally graded between a transition layer and a III-N polarization layer. In embodiments, a gate stack is deposited over sidewalls of a fin including the graded III-N semiconductor channel allowing for formation of a transport channel in the III-N semiconductor channel adjacent to at least both sidewall surfaces in response to a gate bias voltage. In embodiments, a gate stack is deposited completely around a nanowire including a III-N semiconductor channel compositionally graded to enable formation of a transport channel in the III-N semiconductor channel adjacent to both the polarization layer and the transition layer in response to a gate bias voltage.
摘要:
Embodiments include high electron mobility transistors (HEMT). In embodiments, a gate electrode is spaced apart by different distances from a source and drain semiconductor region to provide high breakdown voltage and low on-state resistance. In embodiments, self-alignment techniques are applied to form a dielectric liner in trenches and over an intervening mandrel to independently define a gate length, gate-source length, and gate-drain length with a single masking operation. In embodiments, III-N HEMTs include fluorine doped semiconductor barrier layers for threshold voltage tuning and/or enhancement mode operation.