摘要:
An apparatus and method for gas injection sequencing in order to increase the gas injection total pressure while satisfying an upper limit to the process gas flow rate, thereby achieving gas flow uniformity during a sequence cycle and employing practical orifice configurations. The gas injection system includes a gas injection electrode having a plurality of regions, through which process gas flows into the process chamber. The gas injection system further includes a plurality of gas injection plenums, each independently coupled to one of the aforesaid regions and a plurality of gas valves having an inlet end and an outlet end, where the outlet end is independently coupled to one of the aforesaid plurality of gas injection plenums. The gas injection system includes a controller coupled to the plurality of gas valves for sequencing the flow of process gas through the aforesaid plurality of regions.
摘要:
A plasma processing device comprising a gas injection system is described, wherein the gas injection system comprises a gas injection assembly body, a consumable gas inject plate coupled to the gas injection assembly body, and a pressure sensor coupled to a gas injection plenum formed by the gas injection system body and the consumable gas inject plate. The gas injection system is configured to receive a process gas from at least one mass flow controller and distribute the process gas to the processing region within the plasma processing device, and the pressure sensor is configured to measure a gas injection pressure within the gas injection plenum. A controller, coupled to the pressure sensor, is configured to receive a signal from the pressure sensor and to determine a state of the consumable gas inject plate based upon the signal. A method of determining the state of the consumable gas inject plate comprises: measuring a change in the gas injection pressure associated with either a change in the process gas mass flow rate or the processing pressure; determining a response time for the change in pressure; and comparing the response time during erosion to a response time during no erosion.
摘要:
A method and system is described for treating a substrate with a supercritical fluid using a high temperature process. For example, when the supercritical fluid includes carbon dioxide in a supercritical state, the high temperature process is performed at a temperature approximately equal to and exceeding 80 degrees C., which is greater than the critical temperature of approximately 31 degrees C.
摘要:
An arc suppression system for plasma processing comprising at least one sensor coupled to the plasma processing system, and a controller coupled to the at least one sensor. The controller provides at least one algorithm for determining a state of plasma in contact with a substrate using at least one signal generated from the at least one sensor and controlling a plasma processing system in order to suppress an arcing event. When voltage differences between sensors exceed a target difference, the plasma processing system is determined to be susceptible to arcing. During this condidtion, an operator is notified, and decision can be made to either continue processing, modify processing, or discontinue processing.
摘要:
A method, system and computer readable medium for controlling a process performed by a semiconductor processing tool includes inputting data relating to a process performed by the semiconductor processing tool, and inputting a first principles physical model relating to the semiconductor processing tool. First principles simulation is then performed using the input data and the physical model to provide a first principles simulation result, and the first principles simulation result is used to control the process performed by the semiconductor processing tool.
摘要:
A plasma processing system includes a processing chamber, a substrate holder configured to hold a substrate for plasma processing, and a gas injection assembly. The gas injection assembly includes a first evacuation port located substantially in a center of the gas injection assembly and configured to evacuate gases from a central region of the substrate, and a gas injection system configured to inject gases in the process chamber. The plasma processing system also includes a second evacuation port configured to evacuate gases from a peripheral region surrounding the central region of the substrate.
摘要:
A wall film monitoring system includes first and second microwave mirrors in a plasma processing chamber each having a concave surface. The concave surface of the second mirror is oriented opposite the concave surface of the first mirror. A power source is coupled to the first mirror and configured to produce a microwave signal. A detector is coupled to at least one of the first mirror and the second mirror and configured to measure a vacuum resonance voltage of the microwave signal. A control system is connected to the detector that compares a first measured voltage and a second measured voltage and determines whether the second voltage exceeds a threshold value. A method of monitoring wall film in a plasma chamber includes loading a wafer in the chamber, setting a frequency of a microwave signal output to a resonance frequency, and measuring a first vacuum resonance voltage of the microwave signal. The method includes processing the wafer, measuring a second vacuum resonance voltage of the microwave signal, and determining whether the second measured voltage exceeds a threshold value using the first measured voltage as a reference value.
摘要:
An apparatus for monitoring film deposition on a chamber wall in a process chamber. The apparatus includes a surface acoustic wave device provided on the chamber wall. The surface acoustic wave device is actuated to achieve a resonance frequency, and the resonance frequency produced is detected to determine whether a critical thickness of film on the wall of the chamber has been achieved, where an amount of decrease in the resonance frequency is proportional to a thickness of film on the chamber wall. The process chamber is cleaned when the resonance frequency detected falls within a first predetermined range.
摘要:
A plasma processing system for performing atomic layer deposition (ALD) including a process chamber, a substrate holder provided within the process chamber, and a gas injection system configured to supply a first gas and a second gas to the process chamber. The system includes a controller that controls the gas injection system to continuously flow a first gas flow to the process chamber and to pulse a second gas flow to the process chamber at a first time. The controller pulses a RF power to the substrate holder at a second time. A method of operating a plasma processing system is provided that includes adjusting a background pressure in a process chamber, where the background pressure is established by flowing a first gas flow using a gas injection system, and igniting a processing plasma in the process chamber. The method includes pulsing a second gas flow using the gas injection system at a first time, and pulsing a RF power to a substrate holder at a second time.
摘要:
A high-density plasma source (100) is disclosed. The source includes an annular insulating body (300) with an annular cavity (316) formed within. An inductor coil (340) serving as an antenna is arranged within the annular cavity and is operable to generate a first magnetic field within a plasma duct (60) interior region (72) and inductively couple to the plasma when the annular body is arranged to surround a portion of the plasma duct. A grounded conductive housing (400) surrounds the annular insulating body. An electrostatic shield (360) is arranged adjacent the inner surface of the insulating body and is grounded to the conductive housing. Upper and lower magnet rings (422 and 424) are preferably arranged adjacent the upper and lower surfaces of the annular insulating body outside of the conductive housing. A T-match network is in electrical communication with said inductor coil and is adapted to provide for efficient transfer of RF power from an RF power source to the plasma. At least one plasma source can be used to form a high-density plasma suitable for plasma processing of a workpiece residing in a plasma chamber in communication with the at least one source.