摘要:
Methods for forming carbon silicon alloy (CSA) and structures thereof are disclosed. The method provides improvement in substitutionality and deposition rate of carbon in epitaxially grown carbon silicon alloy layers (i.e., substituted carbon in Si lattice). In one embodiment of the disclosed method, a carbon silicon alloy layer is epitaxially grown on a substrate at an intermediate temperature with a silicon precursor, a carbon (C) precursor in the presence of an etchant and a trace amount of germanium material (e.g., germane (GeH4)). The intermediate temperature increases the percentage of substitutional carbon in epitaxially grown CSA layer and avoids any tendency for silicon carbide to form. The presence of the trace amount of germanium material, of approximately less than 1% to approximately 5%, in the resulting epitaxial layer, has an effect of stabilizing and enhancing deposition/growth rate without compromising the tensile stress of CSA layer formed thereby.
摘要:
Adding at least one non-silicon precursor (such as a germanium precursor, a carbon precursor, etc.) during formation of a silicon nitride, silicon oxide, silicon oxynitride or silicon carbide film improves the deposition rate and/or makes possible tuning of properties of the film, such as tuning of the stress of the film. Also, in a doped silicon oxide or doped silicon nitride or other doped structure, the presence of the dopant may be used for measuring a signal associated with the dopant, as an etch-stop or otherwise for achieving control during etching.
摘要:
Stress level of a nitride film is adjusted as a function of two or more of the following: identity of a starting material precursor used to make the nitride film; identity of a nitrogen-containing precursor with which is treated the starting material precursor; ratio of the starting material precursor to the nitrogen-containing precursor; a set of CVD conditions under which the film is grown; and/or a thickness to which the film is grown. A rapid thermal chemical vapor deposition (RTCVD) film produced by reacting a compound containing silicon, nitrogen and carbon (such as bis-tertiary butyl amino silane (BTBAS)) with NH3 can provide advantageous properties, such as high stress and excellent performance in an etch-stop application. An ammonia-treated BTBAS film is particularly excellent in providing a high-stress property, and further having maintainability of that high-stress property over repeated annealing.
摘要:
A semiconductor device structure includes a substrate, a dielectric layer disposed on the substrate, first and second stacks disposed on the dielectric layer. The first stack includes a first silicon layer disposed on the dielectric layer, a silicon germanium layer disposed on the first silicon layer, a second silicon layer disposed on the silicon germanium layer, and a third silicon layer disposed on the second silicon layer. The second stack includes a first silicon layer disposed on the dielectric layer, and a second silicon layer disposed on the first silicon layer. Alternatively, the silicon germanium layer includes Boron.
摘要:
A method is provided for reducing the microloading effect in a CVD process for depositing a film on a substrate. This method is particularly useful in a single-wafer CVD reactor. The microloading effect is reduced by identifying a growth-rate-limiting reactant; calculating a dilution factor (the ratio of the gas flow rate of the growth-rate-limiting reactant to the total gas flow rate in the reactor); and adjusting the film growth rate and/or the dilution factor to satisfy a numerical criterion for reducing the microloading effect. The criterion is satisfied when the film growth rate is reduced, or the dilution factor is increased, so that the dilution factor is equal to or greater than a quantity which includes the film growth rate as a factor. The film growth rate and dilution factor may be adjusted independently. The gap between the showerhead and the substrate in the CVD reactor may be adjusted to satisfy the numerical criterion. The gap may advantageously be reduced to less than 5 mm, preferably to about 100 &mgr;m. A gap in the range 50 &mgr;m-5 mm reduces a characteristic distance which is a factor in the above-mentioned quantity, so that the criterion becomes easier to meet.
摘要:
A method is provided for filling high aspect ratio gaps without void formation by using a high density plasma (HDP) deposition process with a sequence of deposition and etch steps having varying etch rate-to-deposition rate (etch/dep) ratios. The first step uses an etch/dep ratio less than one to quickly fill the gap. The first step is interrupted before the opening to the gap is closed. The second step uses an etch/dep ratio greater than one to widen the gap. The second step is stopped before corners of the elements forming the gaps are exposed. These steps can be repeated until the aspect ratio of the gap is reduced so that void-free gap-fill is possible. The etch/dep ratio and duration of each step can be optimized for high throughput and high aspect ratio gap-fill capacity.
摘要:
A method for depositing epitaxial films of silicon carbon (Si:C). In one embodiment, the method includes depositing an n-type doped silicon carbon (Si:C) semiconductor material on a semiconductor deposition surface using a deposition gas precursor composed of a silane containing gas precursor, a carbon containing gas precursor, and an n-type gas dopant source. The deposition gas precursor is introduced to the semiconductor deposition surface with a hydrogen (H2) carrier gas. The method for depositing epitaxial films may include an etch reaction provided by hydrogen chloride (HCl) gas etchant and a hydrogen (H2) carrier gas.
摘要:
A method for forming a trench structure is provided for a semiconductor and/or memory device, such as an DRAM device. In one embodiment, the method for forming a trench structure includes forming a trench in a semiconductor substrate, and exposing the sidewalls of the trench to an arsenic-containing gas to adsorb an arsenic containing layer on the sidewalls of the trench. A material layer is then deposited on the sidewalls of the trench to encapsulate the arsenic-containing layer between the material layer and sidewalls of the trench.
摘要:
Epitaxial deposition of silicon germanium in a semiconductor device is achieved without using masks. Nucleation delays induced by interactions with dopants present before deposition of the silicon germanium are used to determine a period over which an exposed substrate surface may be subjected to epitaxial deposition to form a layer of SiGe on desired parts with substantially no deposition on other parts. Dopant concentration may be changed to achieve desired thicknesses within preferred deposition times. Resulting deposited SiGe is substantially devoid of growth edge effects.
摘要:
A method for forming a trench structure is provided for a semiconductor and/or memory device, such as an DRAM device. In one embodiment, the method for forming a trench structure includes forming a trench in a semiconductor substrate, and exposing the sidewalls of the trench to an arsenic-containing gas to adsorb an arsenic containing layer on the sidewalls of the trench. A material layer is then deposited on the sidewalls of the trench to encapsulate the arsenic-containing layer between the material layer and sidewalls of the trench.