Abstract:
The present invention relates to genetically modified microorganisms capable of producing beta-glucans, characterized in that the genetically modified microorganism overexpresses (i) a polynucleotide encoding a polypeptide having 1,3-β-D-glucan synthase-activity, and/or (ii) a polypeptide having 1,3-β-D-glucan synthase-activity, compared to a corresponding non-modified control microorganism of the same strain. The present invention also relates to the use of a polynucleotide encoding a polypeptide having 1,3-β-D-glucan synthase-activity or the use of such a polypeptide for producing β-glucans. Furthermore, the present invention relates to methods for producing β-glucans comprising the introduction of a promoter upstream of a polynucleotide encoding a polypeptide having 1,3-β-D-glucan synthase-activity thereby increasing the expression of the polynucleotide, or a polynucleotide encoding a polypeptide having 1,3-β-D-glucan synthase-activity into a microorganism being able to synthesize β-glucans.
Abstract:
The present invention relates to genetically modified microorganisms capable of producing beta-glucans, characterized in that said genetically modified microorganism overexpresses (i) a polynucleotide encoding a polypeptide having 1,3-β-D-glucan synthase-activity, and/or (ii) a polypeptide having 1,3-β-D-glucan synthase-activity, compared to a corresponding non-modified control microorganism of the same strain. The present invention also relates to the use of a polynucleotide encoding a polypeptide having 1,3-β-D-glucan synthase-activity or the use of such a polypeptide for producing β-glucans. Furthermore, the present invention relates to methods for producing β-glucans comprising the introduction of a promoter upstream of a polynucleotide encoding a polypeptide having 1,3-β-D-glucan synthase-activity thereby increasing the expression of said polynucleotide, or a polynucleotide encoding a polypeptide having 1,3-β-D-glucan synthase-activity into a microorganism being able to synthesize β-glucans.
Abstract:
The present invention relates to bacterial strains, capable of utilizing glycerol as a carbon source for the fermentative production of succinic acid, wherein said strains are genetically modified so that they comprise a deregulation of their endogenous pyruvate-formate-lyase enzyme activity, as well as to methods of producing organic acids, in particular succinic acid, by making use of such microorganism. The present invention also relates to the downstream processing of the produced organic acids by cation exchange chromatography.
Abstract:
The invention relates to a synthetic phytase with elevated thermostability, elevated stability to acids at pH 2, elevated stability to pepsin and with a broadened active pH range, and to an isolated nucleic acid sequence coding for a synthetic phytase and to the use of the phytase in an animal feed for reducing the phosphate content in the slurry and to animal feed additives and animal feeds comprising the synthetic phytase.
Abstract:
Lipase enzymes and methods of using the lipases in a baking for improving the volume, stability, tolerance of a baked product and/or reducing and reducing or eliminating the use of DATEM.
Abstract:
The present invention relates to a method of producing a recombinant polypeptide a filamentous fungus which is genetically modified to decrease or eliminate the activity of cellulase regulator 2 (CLR2) and to express said recombinant polypeptide. The method further relates to a filamentous fungus Myceliophthora thermophila, which is genetically modified to decrease or eliminate the activity of CLR2 and the use of this filamentous fungus in the production of a recombinant polypeptide.
Abstract:
The present invention relates to a modified microorganism having, compared to its wild-type, a reduced activity of the enzyme that is encoded by the pykA-gene. The present invention also relates to a method for producing an organic compound and to the use of modified microorganisms.
Abstract:
The present invention relates to a method of producing a recombinant polypeptide in a filamentous fungus which is genetically modified to decrease or eliminate the activity of cellulase regulator 1 (CLR1) and to express the recombinant polypeptide. The method further relates to a filamentous fungus Myceliophthora thermophila, which is genetically modified to decrease or eliminate the activity of CLR1 and to the use of this filamentous fungus in the production of a recombinant polypeptide.
Abstract:
The present invention relates to bacterial strains, capable of utilizing glycerol as a carbon source for the fermentative production of succinic acid, wherein said strains are genetically modified so that they comprise a deregulation of their endogenous pyruvate-formate-lyase enzyme activity, as well as to methods of producing organic acids, in particular succinic acid, by making use of such microorganism. The present invention also relates to the downstream processing of the produced organic acids by cation exchange chromatography.
Abstract:
The present invention relates to a modified microorganism having, compared to its wild-type, a reduced activity of the enzyme that is encoded by the fruA-gene. The present invention also relates to a method for producing an organic compound and to the use of modified microorganisms.