Abstract:
The present disclosure provides a light-emitting device and manufacturing method thereof, and a display apparatus containing the light-emitting device. The light-emitting device comprises a quantum dot light-emitting layer, an electron transport layer, and an energy transfer layer. The quantum dot light-emitting layer comprises a quantum dot material. The energy transfer layer is between the quantum dot light-emitting layer and the electron transport layer. The energy transfer layer is configured to facilitate a transfer of energy from the electron transport layer to the quantum dot light-emitting layer such that the quantum dot light-emitting layer has an improved electroluminescence efficiency compared with the quantum dot light-emitting layer having an energy transferred directly from the electron transport layer without the energy transfer layer.
Abstract:
The present invention provides an array substrate and a method of fabricating the same, a display panel and a display device. The array substrate array substrate includes a thin film transistor and a zinc oxide layer provided above and/or below an active layer of the thin film transistor, and a vertical projection of the zinc oxide layer on the array substrate is at least overlapped with the vertical projection of the active layer on the array substrate The zinc oxide layer has good absorption on UV light, so that adverse effects of UV light irradiation on a threshold voltage of the TFT of the array substrate are effectively avoided.
Abstract:
The invention provides an array substrate and a driving method thereof, a display panel and a display device. The array substrate comprises a plurality of circulating units and a plurality of pixel circuits. Each circulating unit consists of four sub-pixel units located in four columns and two rows, sub-pixel units in any two adjacent columns are located in different rows and have different colors, and sub-pixel units in at least one row have different colors. Each sub-pixel unit is connected to one pixel circuit, and each sub-pixel unit comprises a first sub-pixel and a second sub-pixel located in the same column and having the same color. The pixel circuit is configured to drive the first sub-pixel when a first frame picture is displayed, and to drive the second sub-pixel when a second frame picture is displayed.
Abstract:
A thin film transistor is provided. An active layer (3) of the thin film transistor is made of an amorphous phosphide semiconductor material. Due to high carrier mobility of the phosphide semiconductor material, a thin film transistor with a high carrier mobility can be obtained by employing the amorphous phosphide semiconductor material to prepare the active layer of the thin film transistor. A method for manufacturing such a thin film transistor, and an array substrate and a display panel each comprising such a thin film transistor, are further provided.
Abstract:
A micro-electro-mechanical system and a manufacturing method thereof. The micro-electro-mechanical system includes a comb tooth structure, a spring structure, and an electrode structure. The comb tooth structure includes first comb teeth and second comb teeth arranged alternately. A cantilever beam connecting the second comb teeth is connected to the spring structure; line widths of a first comb tooth and a second comb tooth are 3-7 microns, and are not less than a distance between the adjacent first comb tooth and the second comb tooth a ratio of the length of the first comb tooth to a length of the second comb tooth is 0.7-1.5, a width of the cantilever beam is not less than the line width of the second comb tooth, and thickness of the first comb tooth and a thickness of the second comb tooth are both 300 nanometers to 500 microns.
Abstract:
An antenna, a display substrate and a display device are provided in the present disclosure, wherein the antenna includes a first conductive layer (11), a dielectric layer (12) and a second conductive layer (13) which are stacked; the first conductive layer (11) is provided with at least one slot (111); the second conductive layer (13) includes at least one conductive structure (130), the conductive structure (130) is a comb structure, the conductive structure (130) includes a first conductive element (131) and a plurality of second conductive elements (132), the first conductive element (131) constitutes a comb back of the comb structure, and the plurality of second conductive elements (132) constitute comb teeth of the comb structure; at least one conductive structure (130) is disposed corresponding to at least one slot (111).
Abstract:
The present disclosure provides a metal wire and a method for manufacturing the same. The method for manufacturing the metal wire includes: forming a metal bar on a substrate; forming a mask above the metal bar, a width of the mask being smaller than a width of the metal bar, and an orthographic projection of the mask on the substrate is within an orthographic projection of the metal bar on the substrate; and wet etching the metal bar to a saturation state under a protection of the mask to form a metal wire, a width of the metal wire being smaller than the width of the mask. The above method can form the metal wire with a high thickness and a narrow line width.
Abstract:
The present disclosure provides an unlocking control method, an unlocking control device, an electronic apparatus, and a computer-readable storage medium. The unlocking control method for the electronic apparatus includes: obtaining an unlocking touch input; in the case that a retention time of the unlocking touch input at any one of a plurality of target positions is greater than a predetermined time threshold, generating at least one vibration excitation in accordance with the retention time; and in the case that an unlocking control signal determined in accordance with the unlocking touch input matches a predetermined unlocking password, controlling the electronic apparatus to be unlocked. The unlocking control signal includes a touch sequence of the unlocking touch input with respect to the plurality of target positions and the quantity of vibration excitations generated at each target position.
Abstract:
A quantum dot light-emitting diode substrate having a bonding layer and a method of preparing the same are provided. The quantum dot light-emitting diode substrate including a plurality of sub-pixel light-emitting regions, wherein each of the sub-pixel light-emitting regions includes a light-emitting layer including a bonding layer and a quantum dot bonded to the bonding layer. The quantum dot light-emitting diode substrate can be prepared with high resolution by a convenient process, and is suitable for mass production.
Abstract:
There is provided a phase shifter including a substrate, a signal line on the substrate, ground lines disposed in pairs on the substrate, and at least one film bridge. Two ground lines of the ground lines are on two sides of the signal line and are respectively spaced apart from the signal line. Each film bridge includes a plurality of connection walls and a bridge floor structure that is opposite to the substrate. The connection walls are respectively on the two ground lines. The bridge floor structure includes a phase shifting electrode and at least one pair of adsorption electrodes respectively connected to two sides of the phase shifting electrode. The phase shifting electrode is opposite to the signal line. Two adsorption electrodes in each pair are respectively opposite to the two ground lines, and are respectively connected to the connection walls on the two ground lines.