Abstract:
Methods of firing ceramic-forming honeycomb bodies are disclosed that include heating the honeycomb bodies and blocking furnace gases from flowing through the honeycomb body by placing a layer selected from the group consisting of a graphite layer, a graphite-containing layer, an activated carbon layer, or an amorphous carbon layer adjacent an endface of the honeycomb body. Heating removes organic pore-forming material and graphite pore-forming material in the honeycomb body. The layer oxidizes to form a porous layer after firing to a first temperature, and furnace gases flow through the honeycomb body.
Abstract:
Methods of firing ceramic-forming honeycomb bodies are disclosed that include heating the honeycomb bodies and blocking furnace gases from flowing through the honeycomb body by placing a layer selected from the group consisting of a graphite layer, a graphite-containing layer, an activated carbon layer, or an amorphous carbon layer adjacent an endface of the honeycomb body. Heating removes organic pore-forming material and graphite pore-forming material in the honeycomb body. The layer oxidizes to form a porous layer after firing to a first temperature, and furnace gases flow through the honeycomb body.
Abstract:
A ceramic composition is disclosed comprising an inorganic batch composition comprising a magnesia source, a silica source, an alumina source, a titania source, and at least one rare earth oxide wherein the rare earth oxide comprises a particle size distribution (D90) of less than 5 μm and a median particle size (D50) of about 0.4 μm. A ceramic article comprising a first crystalline phase comprised predominantly of a solid solution of aluminum titanate and magnesium dititanate, a second crystalline phase comprising cordierite, a third crystalline phase comprising mullite, and a rare earth oxide, and a method of making same are disclosed.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite-mullite-aluminum magnesium titanate (CMAT) ceramic compositions having high cordierite-to-mullite ratio and methods for the manufacture of same.
Abstract:
Disclosed is a honeycomb catalyst support structure comprising a honeycomb body and an outer layer or skin formed of a cement comprising an amorphous glass powder with a multimodal particle size distribution applied to an exterior surface of the honeycomb body. The multimodal particle size distribution is achieved through the use of a first glass powder having a first median particle size and at least a second glass powder having a second median particle size. In some embodiments, the first and second glass powders are the same amorphous glass consisting of fused silica. The cement may further include a fine-grained, sub-micron sized silica in the form of colloidal silica. The cement exhibits a coefficient of thermal expansion less than 15×10−7/° C., and preferably about 5×10−7/° C. after drying.
Abstract:
Disclosed are ceramic bodies comprised of a tialite phase and at least one silicate phase with a rare earth oxide and zirconium additions and methods for the manufacture of the same.
Abstract:
Disclosed herein are formed ceramic substrates comprising an oxide ceramic material, wherein the formed ceramic substrate comprises a low elemental alkali metal content, such as less than about 1000 ppm. Also disclosed are composite bodies comprising at least one catalyst and a formed ceramic substrate comprising an oxide ceramic material, wherein the composite body has a low elemental alkali metal content, such as less than about 1000 ppm, and methods for preparing the same.
Abstract:
A method of plugging a permeable porous cellular body comprises: contacting the permeable porous cellular body with a plugging mixture, the permeable porous cellular body defining a plurality of channels; forcing the plugging mixture into the plurality of channels until a maximum, self-limiting, depth of plugging mixture is disposed within the plurality of channels; and maintaining a constant flow rate of the plugging mixture into the plurality of channels until a pressure on the plugging mixture elevates to a predetermined pressure. Alternatively, the method comprises forcing the plugging mixture into the plurality of channels utilizing the application of a constant pressure over time until a maximum, self-limiting, depth of the plugging mixture is disposed within the plurality of channels; and maintaining the constant pressure applied to the plugging mixture until flow of the plugging mixture into the channels decays from an initial flow rate to a predetermined flow rate.
Abstract:
A method of plugging a permeable porous cellular body (14) comprises: contacting the permeable porous cellular body (14) with a plugging mixture (100), the permeable porous cellular body (14) defining a plurality of channels (26); forcing the plugging mixture (100) into the plurality of channels (26) until a maximum, self-limiting, depth (114) of plugging mixture (100) is disposed within the plurality of channels (26); and maintaining a constant flow rate of the plugging mixture (100) into the plurality of channels until (26) a pressure on the plugging mixture (100) elevates to a predetermined pressure. Alternatively, the method comprises forcing the plugging mixture (100) into the plurality of channels (26) utilizing the application of a constant pressure over time until a maximum, self-limiting, depth (114) of the plugging mixture (100) is disposed within the plurality of channels (26); and maintaining the constant pressure applied to the plugging mixture (100) until flow of the plugging mixture (100) into the channels (26) decays from an initial flow rate to a predetermined flow rate.