Abstract:
An electrode structure having at least two oxide layers that more reliably switch and operate without the use of additional devices and a non-volatile memory device having the same are provided. The electrode structure may include a lower electrode, a first oxide layer formed on the lower electrode, a second oxide layer formed on the first oxide layer and an upper electrode formed on the second oxide layer wherein at least one of the first and second oxide layers may be formed of a resistance-varying material. The first oxide layer may be formed of an oxide having a variable oxidation state.
Abstract:
An emitter for an electron-beam projection lithography system includes a photoconductor substrate, an insulating layer formed on a front surface of the photoconductor substrate, a gate electrode layer formed on the insulating layer, and a base electrode layer formed on a rear surface of the photoconductor substrate and formed of a transparent conductive material. In operation of the emitter, a voltage is applied between the base electrode and the gate electrode layer, light is projected onto a portion of the photoconductor substrate to convert the portion of the photoconductor substrate into a conductor such that electrons are emitted only from the partial portion where the light is projected. Since the emitter can partially emit electrons, partial correcting, patterning or repairing of a subject electron-resist can be realized.
Abstract:
An emitter for an electron-beam projection lithography system includes a photoconductor substrate, an insulating layer formed on a front surface of the photoconductor substrate, a gate electrode layer formed on the insulating layer, and a base electrode layer formed on a rear surface of the photoconductor substrate and formed of a transparent conductive material. In operation of the emitter, a voltage is applied between the base electrode and the gate electrode layer, light is projected onto a portion of the photoconductor substrate to convert the portion of the photoconductor substrate into a conductor such that electrons are emitted only from the partial portion where the light is projected. Since the emitter can partially emit electrons, partial correcting, patterning or repairing of a subject electron-resist can be realized.
Abstract:
An electron beam lithography apparatus for providing one-to-one or x-to-one projection of a pattern includes a pyroelectric emitter, which is disposed a predetermined distance apart from a substrate holder, the pyroelectric emitter including a pyroelectric plate having a dielectric plate on a surface thereof and a patterned semiconductor thin film on the dielectric plate facing the substrate holder, a heating source for heating the pyroelectric emitter, and either a pair of magnets disposed beyond the pyroelectric emitter and the substrate holder, respectively, or a deflection unit disposed between the pyroelectric emitter and the substrate holder, to control paths of electrons emitted by the pyroelectric emitter. In operation, when the pyroelectric emitter is heated in a vacuum, electrons are emitted from portions of the pyroelectric plate that are not covered by the patterned semiconductor thin film.
Abstract:
An emitter for an electron-beam projection lithography (EPL) system and a manufacturing method therefor are provided. The electron-beam emitter includes a substrate, an insulating layer overlying the substrate, and a gate electrode including a base layer formed on top of the insulating layer to a uniform thickness and an electron-beam blocking layer formed on the base layer in a predetermined pattern. The manufacturing method includes steps of: preparing a substrate; forming an insulating layer on the substrate; forming a base layer of a gate electrode by depositing a conductive metal on the insulating layer to a predetermined thickness; forming an electron-beam blocking layer of the gate electrode by depositing a metal capable of anodizing on the base layer to a predetermined thickness; and patterning the electron-beam blocking layer in a predetermined pattern by anodizing. The emitter provides a uniform electric field within the insulating layer and simplify the manufacturing method therefor.
Abstract:
Example embodiments may provide nonvolatile memory devices and example methods of fabricating nonvolatile memory devices. Example embodiment nonvolatile memory devices may include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
Abstract:
Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
Abstract:
Nonvolatile memory devices may be fabricated to include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
Abstract:
Example embodiments relate to a method of manufacturing a germanosilicide and a semiconductor device having the germanosilicide. A method according to example embodiments may include providing a substrate having at least a portion formed of silicon germanium. A metal layer may be formed on the silicon germanium. A thermal process may be performed on the substrate at a relatively high pressure to form the germanosilicide.
Abstract:
An inductively coupled plasma apparatus is provided, wherein the inductively coupled plasma apparatus includes a process chamber having a wafer susceptor on which a substrate is installed, a top plasma source chamber which is installed on the process chamber, a reactor, which is installed in the top plasma source chamber, having a channel through which a gas flows, wherein the reactor supplies plasma reaction products to the process chamber, an inductor, having two ends, is installed between the top plasma source chamber and the reactor and is wound around the reactor, an opening which is positioned within a circumferential space in which the inductor is installed between the reactor and the process chamber, and a shutter operable to open and close the opening. Thus, a uniform radial distribution of radicals emanating from a plasma source can be improved.