Abstract:
The non-invasive detection of fetal chromosomal aneuploidies is demonstrated. Alleles of fetal RNA-SNPs present in a biological sample (e.g. maternal blood) containing fetal RNA are detected and quantified in order to determine the ratio of the alleles. This ratio is compared to a standard control consisting of euploid fetuses. Deviation of allele ratio indicates the presence of chromosomal aneuploidy.
Abstract:
The non-invasive detection of fetal chromosomal aneuploidies is demonstrated. Alleles of fetal RNA-SNPs present in a biological sample (e.g. maternal blood) containing fetal RNA are detected and quantified in order to determine the ratio of the alleles. This ratio is compared to a standard control consisting of euploid fetuses. Deviation of allele ratio indicates the presence of chromosomal aneuploidy.
Abstract:
The present invention provides nucleic acid molecules, DNA constructs, plasmids, and methods for post-transcriptional regulation of gene expression using RNA molecules to both repress and activate translation of an open reading frame. Repression of gene expression is achieved through the presence of a regulatory nucleic acid element (the cis-repressive RNA or crRNA) within the 5′ untranslated region (5′ UTR) of an mRNA molecule. The nucleic acid element forms a hairpin (stem/loop) structure through complementary base pairing. The hairpin blocks access to the mRNA transcript by the ribosome, thereby preventing translation. In particular, in embodiments of the invention designed to operate in prokaryotic cells, the stem of the hairpin secondary structure sequesters the ribosome binding site (RBS). In embodiments of the invention designed to operate in eukaryotic cells, the stem of the hairpin is positioned upstream of the start codon, anywhere within the 5′ UTR of an mRNA. A small RNA (trans-activating RNA, or taRNA), expressed in trans, interacts with the crRNA and alters the hairpin structure. This alteration allows the ribosome to gain access to the region of the transcript upstream of the start codon, thereby activating transcription from its previously repressed state.
Abstract:
Chromosomal abnormalities are responsible for a significant number of birth defects, including mental retardation. The present invention is related to methods for non-invasive and rapid, prenatal diagnosis of chromosomal abnormalities based on analysis of a maternal blood sample. The invention exploits the differences in DNA between the mother and fetus, for instance differences in their methylation states, as a means to enrich for fetal DNA in maternal plasma sample. The methods described herein can be used to detect chromosomal DNA deletions and duplications. In a preferred embodiment, the methods are used to diagnose chromosomal aneuploidy and related disorders, such as Down's and Turner's Syndrome.
Abstract:
The present invention is directed to compositions and methods for the production of split-biomolecular conjugates for the directed targeting of nucleic acids and polypeptides. More preferably, the compositions and methods allow for the use of the split biomolecular conjugates for the treatment of diseases, malignancies, disorders and screening. In some embodiments, the split biomolecular conjugates comprise split effector protein fragments conjugated to a probe, and interaction of both probes with a target nucleic acid or target polypeptide, such as a pathogenic nucleic acid sequence or pathogenic protein, brings a the split-effector fragments together to facilitate the reassembly of the effector molecule. Depending on the effector molecule, the protein complementation results in a cellular effect, in particular for the treatment of diseases, malignancies and disorders.
Abstract:
The present invention provides an efficient way for high throughput haplotype analysis. Several polymorphic nucleic add markers, such as SNPs, can be simultaneously and reliably determined through multiplex PCR of single nucleic acid molecules in several parallel single molecule dilutions and the consequent statistical analysis of the results from these parallel single molecule multiplex PCR reactions results in reliable determination of haplotypes present in the subject. The nucleic acid markers can be of any distance to each other on the chromosome. In addition, an approach wherein overlapping DNA markers are analyzed can be used to link smaller haplotypes into larger haplotypes. Consequently, the invention provides a powerful new tool for diagnostic haplotyping and identifying novel haplotypes.
Abstract:
The non-invasive detection of fetal chromosomal aneuploidies is demonstrated. Alleles of fetal RNA-SNPs present in a biological sample (e.g. maternal blood) containing fetal RNA are detected and quantified in order to determine the ratio of the alleles. This ratio is compared to a standard control consisting of euploid fetuses. Deviation of allele ratio indicates the presence of chromosomal aneuploidy.
Abstract:
The present invention is directed to novel methods for in vitro and in vivo detection of target nucleic acid molecules, including DNA and RNA targets, as well as nucleic acid analogues. The present invention is based on protein complementation, in which two individual polypeptides are inactive. When the two inactive polypeptide fragment are brought in close proximity during hybridization to a target nucleic acid, they re-associate into an active, detectable protein.
Abstract:
Provided herein are methods for prognosing and diagnosing fat deposition and related disorders (e.g., obesity and non-insulin diabetes dependent mellitus (NIDDM)) in a subject, reagents and kits for carrying out the methods, methods for identifying candidate therapeutics for reducing fat deposition and related disorders, and therapeutic methods for reducing fat deposition or treating fat deposition related disorders in a subject. These embodiments are based in part upon an analysis of polymorphic variations of the nucleic acid set forth in SEQ ID NO:1.
Abstract translation:本文提供了用于预测和诊断受试者的脂肪沉积和相关疾病(例如,肥胖和非胰岛素糖尿病依赖性细胞(NIDDM))的方法,用于实施该方法的试剂和试剂盒,用于鉴定用于减少脂肪沉积的候选治疗剂的方法 和相关疾病,以及用于减少受试者中脂肪沉积或治疗脂肪沉积相关疾病的治疗方法。 这些实施方案部分地基于对SEQ ID NO:1所示的核酸的多态变异的分析。
Abstract:
The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.