Abstract:
An optoelectronic assembly includes a circuit board having a set of signal traces, where one or more of the signal traces has a junction point that integrates a pad of a circuit element. Exemplary circuit elements include a resistor, capacitor, and an inductor. The junction point has a first width and a first thickness, and the one or more signal traces have a second width and a second thickness. The dimensions of the junction point and the dimensions of the one or more signal traces are configured such that the first width and the second width are substantially similar, and that the first thickness and the second thickness are substantially similar. In one embodiment, the first width is no greater than 125% of the second width.
Abstract:
A transceiver module is provided that includes an optical subassembly having an extension with traces corresponding to traces defined on an associated transceiver substrate. A connector element including a flexible, non-electrically conductive substrate within which is disposed an array of conductors is placed between overlapping portions of the extension and the transceiver substrate so that upper ends of some of the conductors contact the traces of the extension, while lower ends of those same conductors contact the corresponding traces of the transceiver substrate. In this way, the connector element provides electrical communication between the optical subassembly and transceiver substrate, while also accommodating misalignment that may be present, or develop, in the transceiver module components.
Abstract:
A flexible circuit comprises a flexible substrate having first and second opposing surfaces. The flexible substrate can include multiple layers. A plurality of electrical traces can be mounted on either or both surfaces of the flexible substrate. A plurality of electrical components can also be mounted on either or both surfaces of the flexible substrate. A plurality of tooling cutouts is recessed in the sides of the flexible circuit. The tooling cutouts can have various shapes, such as, but not limited to, semi-circular, multiple straight edges, a single or multiple curved edges, etc. The cutouts are used to position and hold the flexible circuit in at least one other device.
Abstract:
A sleeve apparatus for protecting a robotic kitchen arm from contamination. The sleeve includes a proximal end, a distal end, a passageway extending from the proximal end to the distal end, and an exterior surface. The passageway has an effective diameter less than the effective diameter of the robotic kitchen arm such that the exterior surface of the sleeve apparatus is substantially fold-free when the robotic arm is in the extended configuration. Methods of cleaning a robotic kitchen arm are also described.
Abstract:
In a communications system, after parties form a dial up voice telephone connection, the parties respective communications devices automatically create or leverage machine readable features or content of the telephone connection to identify the parties to each other or to a rendezvous server, and thereafter the communications devices and/or the rendezvous server automatically establishes a data link between the parties.
Abstract:
An assembly and method for testing an optical subassembly by locally heating or cooling the optical subassembly. Locally heating or cooling the optical subassembly can include using a thermal transfer assembly. The thermal transfer assembly can include a thermoelectric cooler. A clamping assembly is provided to place the optical subassembly in electrical communication with a testing assembly. The thermal transfer assembly can be associated with the clamping assembly. After achieving the desired temperature, a data stream is transmitted through the optical subassembly and evaluated for compliance.