Abstract:
A valve for saving water and energy in a shower uses a wax motor as an actuator. Below the activation temperature of the wax motor, the valve is open and the shower water flows. When the water reaches the activation temperature, the piston of the wax motor extends and turns off the water in the shower. The person taking the shower then can restore flow by turning a handle. The shower can then be turned off and on at will by turning the handle manually. When the valves cools down, it resets automatically.
Abstract:
Methods for generating and sharing a virtual body model of a person, created with a small number of measurements and a single photograph, combined with one or more images of garments. The model represents a realistic representation of the users body and is used for visualizing photo-realistic fit visualizations of garments, hairstyles, etc. The virtual garments are created from layers based on photographs of real garment from multiple angles. The virtual body model is used in multiple embodiments of manual and automatic garment, make-up, and, hairstyle recommendations, such as, from channels, friends, and fashion entities, and sharable for visualization and comments on looks, for enabling users to buy garments that fit other users, suitable for gifts or similar, and can be used in peer-to-peer online sales where garments can be bought with the knowledge that the seller has a similar body shape and size as the user.
Abstract:
It is known to insulate bus bars to reduce shock and arc-flash hazards. However, failed or damaged insulation may not be noticed, possibly presenting a greater hazard as it is unexpected and therefore not prepared for. A metal cladding at earth ground enhances the safety to personnel and reduces the likelihood of a more serious line to line arc-flash. Still better is the use of a guard conductor intermediate between the hot conductor and the earth ground insulated from both. Not only does it introduce an additional layer of insulation, it also provides a way to continuously monitor the integrity of the insulation. A resistor divider establishes the nominal voltage on the guard conductor. A departure from nominal voltage indicates a potential fault. The guard conductor can also be used as a node for connecting other sensors, or one of the insulation layers may be of thermally sensitive polymer, to detect hot spots.
Abstract:
An interposer is made of nested drawn copper shells with insulation between them. The shells are etched using methods of ordinary printed wiring fabrication, but being three dimensional, straight runs from the die to the motherboard can be made optimally short and wide without passing through any vias. Some shells can extend upward for top connections, and vias and crossing landlines can be used as required in the areas away from the die.
Abstract:
This invention teaches power factor corrected 3-phase ac-dc power converters in which the duty-cycles are determined by “natural modulation”, that is, they are forced by a fixed algorithm that has been optimized for efficient switching. The duty-cycles do not regulate the output voltage but they do force the input currents to be proportionately correct for good power factor. A feedback control circuit modulates the effective turns-ratio of a variable dc-dc transformer to regulate the output voltage. For a buck converter, the most efficient duty-cycle is 100%, that is, the buck switch is always on. For a boost converter, the most efficient duty-cycle is 0%, that is, the boost switch is always off. “100% duty-cycle” as defined for a buck 3-phase ac input means that there is no off-time. The switch duty-cycles are as follows: The duty-cycle for the phase with the highest voltage magnitude (the dominant phase) is 100%, and sum of the duty-cycles of the other two phases equals 100%. “0% duty-cycle” as defined for a boost 3-phase ac input means that the input is never short circuited line to line. The duty-cycle for the switch for the phase with the highest voltage magnitude (the dominant phase) is 0%, and switches of the other two phases modulate to control their respective input currents.
Abstract:
Many power converters operate with an input voltage that has a normal range of voltage that is quite narrow, for example, commercial ac voltage or from a regulated upstream power converter. To accommodate transient and abnormal conditions, power converters are often designed for a wide range of input voltage, which seriously compromises their efficiency at nominal voltage. This invention teaches a power converter that is optimized for the normal operating voltage range. A variable dc-dc transformer and a buck derived modulator are used in series. The buck circuit is most efficient at high duty cycles, and for normal input voltage, the buck converter may be saturated at 100 percent duty cycle. The duty cycle of the buck converter is reduced to accommodate over voltage transients. Efficiency is compromised, but the duration is short, so that is acceptable. For normal and under voltage conditions, the effective turns ratio of the variable dc-dc transformer is modulated to effect control. At normal input voltage, the effective turns ratio is nearly maximized, for optimum efficiency. At lower voltages, the efficiency is compromised, but the duration is short, so that is acceptable.
Abstract:
In a transformer wound on a core having three or more legs (N legs), N−1 of the legs can have a flux distribution winding on them comprising flux distribution coils on each of the N−1 legs. The flux distribution coils are all connected together, usually in phase, so all of the coils see the same voltage. If the several coils have different numbers of turns, then the volt per turn will differ inversely, and so too will the flux in the N−1 legs. The flux in the Nth leg is the algebraic sum of the flux in the N−1 legs, and is usually the “Main” flux path. A winding around one of the legs would have a terminal voltage proportional to the number of turns and the flux in the leg. A winding may make several turns around the main leg of the transformer, then make one or more turns around a side leg having a different flux, usually some fraction of the flux in the main leg. The extra turns, having a fractional flux, are the equivalent of a fractional turn. The ampere-turns are reconciled by a circulating current in the flux distribution windings.
Abstract:
A transform-rectifier module has a one-half turn secondary winding installed with very short, direct connections to four rectifiers. The core of the transformer has two parallel through holes. The secondary winding comprises two "Y" shaped windings. The "Y" legs of each winding are installed through the through holes from opposite sides of the core, and the ends of the "Y" windings connect to the four rectifiers. The common connections of the "Y" windings terminate on a ground plane. The rectifiers may be mounted on a common power plane which may also be a heat sink for the rectifiers and a mounting plate for the module as a whole. There is room through the through holes for a primary winding, which may be installed during manufacture or later. The modules may be used singly or in a matrix transformer-like arrangement. They are characterized by very low leakage inductance, high current capacity, good thermal properties and a low profile.
Abstract:
A pot core matrix transformer has a large number of connections from its secondary winding, the connections being fairly evenly distributed around the bottom surface. If these connections are terminated in a circuit board which has been optimized for good thermal conductivity, the temperature rise in the transformer will be small, even with very high current densities. Embodiments are shown for mounting directly on a heat sink and for surface mounting on a circuit card.
Abstract:
Heat transfer from the inside of a fan duct to the air is very good because the air in this region has a high velocity and is turbulent due to the rotation of the fan blades. Devices mounted on the outside of the fan duct can thus be cooled effectively. The inside surface of the duct can be modified to enhance the heat transfer as by grooving it deeply. The fan blade also can be modified to increase the air velocity and the turbulence. External fins can be added to the fan duct, and it can be shrouded so that a portion of the exit air passes through the fins back to the inlet. This decreases the mass of the exit air, for quieter operation.