Abstract:
An ion implantation system is described, including: an ion implanter comprising a housing defining an enclosed volume in which is positioned a gas box configured to hold one or more gas supply vessels, the gas box being in restricted gas flow communication with gas in the enclosed volume that is outside the gas box; a first ventilation assembly configured to flow ventilation gas through the housing and to exhaust the ventilation gas from the housing to an ambient environment of the ion implanter; a second ventilation assembly configured to exhaust gas from the gas box to a treatment apparatus that is adapted to at least partially remove contaminants from the gas box exhaust gas, or that is adapted to dilute the gas box exhaust gas, to produce a treated effluent gas, the second ventilation assembly comprising a variable flow control device for modulating flow rate of the gas box exhaust gas between a relatively lower gas box exhaust gas flow rate and a relatively higher gas box exhaust gas flow rate, and a motive fluid driver adapted to flow the gas box exhaust gas through the variable flow control device to the treatment apparatus; and a monitoring and control assembly configured to monitor operation of the ion implanter for occurrence of a gas hazard event, and thereupon to responsively prevent gas-dispensing operation of the one or more gas supply vessels, and to modulate the variable flow control device to the relatively higher gas box exhaust gas flow rate so that the motive fluid driver flows the gas box exhaust gas to the treatment apparatus at the relatively higher gas box exhaust gas flow rate. Preferably, in a gas hazard event, the shell exhaust discharge from the housing is also terminated, to facilitate exhausting all gas within the housing, outside as well as inside the gas box, to the treatment unit.
Abstract:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
Abstract:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Abstract:
Compositions, systems, and methods are described for implanting silicon and/or silicon ions in a substrate, involving generation of silicon and/or silicon ions from corresponding silicon precursor compositions, and implantation of the silicon and/or silicon ions in the substrate.
Abstract:
Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
Abstract:
A delivery system for delivering a vaporized source precursor in ion implantation, including: an assembly including: a vessel having an interior volume and configured to produce the vaporized source precursor; a first heater to heat the vessel; and a manifold configured to control the output of the vaporized source precursor to an ion implantation device, wherein the assembly is configured to be disposed upstream of the source inlet flange.
Abstract:
Described are ion implantation devices, systems, and methods, and in particular to an ion source that is useful for generating an aluminum ion beam.
Abstract:
A system and method for generating aluminum ions for implantation into a substrate. The system and method comprise flowing a chlorine-containing gas from a first vessel, optionally with a hydrogen-containing co-gas and optionally with a fluorine-containing co-gas, to an ion source chamber of an ion implantation device. The ion source chamber comprises a solid aluminum target material. At the ion source chamber, aluminum ions are generated for implantation into a substrate.
Abstract:
Described are ion implantation devices, systems, and methods, and in particular to an ion source that is useful for generating an aluminum ion beam.