Abstract:
An ion implantation system is described, including: an ion implanter comprising a housing defining an enclosed volume in which is positioned a gas box configured to hold one or more gas supply vessels, the gas box being in restricted gas flow communication with gas in the enclosed volume that is outside the gas box; a first ventilation assembly configured to flow ventilation gas through the housing and to exhaust the ventilation gas from the housing to an ambient environment of the ion implanter; a second ventilation assembly configured to exhaust gas from the gas box to a treatment apparatus that is adapted to at least partially remove contaminants from the gas box exhaust gas, or that is adapted to dilute the gas box exhaust gas, to produce a treated effluent gas, the second ventilation assembly comprising a variable flow control device for modulating flow rate of the gas box exhaust gas between a relatively lower gas box exhaust gas flow rate and a relatively higher gas box exhaust gas flow rate, and a motive fluid driver adapted to flow the gas box exhaust gas through the variable flow control device to the treatment apparatus; and a monitoring and control assembly configured to monitor operation of the ion implanter for occurrence of a gas hazard event, and thereupon to responsively prevent gas-dispensing operation of the one or more gas supply vessels, and to modulate the variable flow control device to the relatively higher gas box exhaust gas flow rate so that the motive fluid driver flows the gas box exhaust gas to the treatment apparatus at the relatively higher gas box exhaust gas flow rate. Preferably, in a gas hazard event, the shell exhaust discharge from the housing is also terminated, to facilitate exhausting all gas within the housing, outside as well as inside the gas box, to the treatment unit.
Abstract:
A monitoring system for monitoring fluid in a fluid supply vessel during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor and display operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
Abstract:
Fluid storage and dispensing systems and methods for remote delivery of fluids are described, for providing fluid from a source vessel at lower voltage to one or more fluid-utilizing tools at higher voltage, so that the fluid crosses the associated voltage gap without arcing, discharge, premature ionization, or other anomalous behavior, and so that when multiple fluid-utilizing tools are supplied by the remote source vessel, fluid is efficiently supplied to each of the multiple tools at suitable pressure level during the independent operation of others of the multiple vessels.
Abstract:
A monitoring system for monitoring fluid in a fluid supply vessel during operation including dispensing of fluid from the fluid supply vessel. The monitoring system includes (i) one or more sensors for monitoring a characteristic of the fluid supply vessel or the fluid dispensed therefrom, (ii) a data acquisition module operatively coupled to the one or more sensors to receive monitoring data therefrom and responsively generate an output correlative to the characteristic monitored by the one or more sensors, and (iii) a processor and display operatively coupled with the data acquisition module and arranged to process the output from the data acquisition module and responsively output a graphical representation of fluid in the fluid supply vessel, billing documents, usage reports, and/or resupply requests.
Abstract:
A gas supply assembly is described for delivery of gas to a plasma flood gun. The gas supply assembly includes: a fluid supply package configured to deliver inert gas to a plasma flood gun for generating inert gas plasma including electrons for modulating surface charge of a substrate in ion implantation operation; and cleaning gas in the inert gas fluid supply package in mixture with the inert gas, or in a separate cleaning gas supply package configured to deliver cleaning gas to the plasma flood gun concurrently or sequentially with respect to delivery of inert gas to the plasma flood gun. A method of operating a plasma flood gun is also described, in which cleaning gas is introduced to the plasma flood gun, intermittently, continuously, or sequentially in relation to flow of inert gas to the plasma flood gun. The cleaning gas is effective to generate volatile reaction product gases from material deposits in the plasma flood gun, and to effect re-metallization of a plasma generation filament in the plasma flood gun.
Abstract:
Compositions, methods, and apparatus are described for carrying out nitrogen ion implantation, which avoid the incidence of severe glitching when the nitrogen ion implantation is followed by another ion implantation operation susceptible to glitching, e.g., implantation of arsenic and/or phosphorus ionic species. The nitrogen ion implantation operation is advantageously conducted with a nitrogen ion implantation composition introduced to or formed in the ion source chamber of the ion implantation system, wherein the nitrogen ion implantation composition includes nitrogen (N2) dopant gas and a glitching-suppressing gas including one or more selected from the group consisting of NF3, N2F4, F2, SiF4, WF6, PF3, PF5, AsF3, AsF5, CF4 and other fluorinated hydrocarbons of CxFy (x≧1, y≧1) general formula, SF6, HF, COF2, OF2, BF3, B2F4, GeF4, XeF2, O2, N2O, NO, NO2, N2O4, and O3, and optionally hydrogen-containing gas, e.g., hydrogen-containing gas including one or more selected from the group consisting of H2, NH3, N2H4, B2H6, AsH3, PH3, SiH4, Si2H6, H2S, H2Se, CH4 and other hydrocarbons of CxHy (x≧1, y≧1) general formula and GeH4.
Abstract:
Fluid supply packages of varying types are described, which are useful for delivery of fluids to fluid-utilizing facilities such as semiconductor manufacturing facilities, solar panel manufacturing facilities, and flat-panel display manufacturing facilities. The fluid supply packages include fluid supply vessels and valve heads of varied configuration, as useful to constitute fluid supply packages that are pressure-regulated and/or adsorbent-based in character.