摘要:
A semiconductor nanocrystal, wherein the semiconductor nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
摘要:
Disclosed herein is a light emitting device with improved life characteristics. The light emitting device comprises a circuit board having a recess, a reflection plane and an excitation source disposed in the recess, an overmolding overlying the reflection plane and the excitation source, a surface-inducing film formed on the overmolding, and a light conversion layer overlying the surface-inducing film. Also disclosed herein is a method for fabricating the light emitting device.
摘要:
Provided is an optoelectronic device that includes: a light source; an emission layer disposed on the light source and including light emitting particles dispersed in a matrix polymer; and a polymer film disposed on the emission layer. The polymer film includes two layers: a first layer including a first polymer and a second layer including a second polymer. The first polymer includes a polymerized product of a first monomer including at least two thiol (—SH) groups and a siloxane-based second monomer or oligomer including at least one carbon-carbon unsaturated bond at a terminal end, and the second polymer includes a polymerized product of a third monomer including at least two thiol (—SH) groups and a fourth monomer including at least two carbon-carbon unsaturated bonds at a terminal end.
摘要:
A nanocrystal electroluminescence device comprising a polymer hole transport layer, a nanocrystal light-emitting layer and an organic electron transport layer wherein the nanocrystal light-emitting layer is independently and separately formed between the polymer hole transport layer and the organic electron transport layer. According to the nanocrystal electroluminescence device, since the hole transport layer, the nanocrystal light-emitting layer and the electron transport layer are completely separated from one another, the electroluminescence device provides a pure nanocrystal luminescence spectrum having limited luminescence from other organic layers and substantially no influence by operational conditions, such as voltage. Further included is a method for fabricating the nanocrystal electroluminescence device.
摘要:
A nanocrystal composite that includes a matrix including semiconductor nanocrystals, and a barrier layer disposed on at least a portion of the surface of the matrix and including a polymer with low oxygen permeability, low moisture permeability, or both.
摘要:
Disclosed herein is a nanocrystal-metal oxide complex. The nanocrystal of the nanocrystal-metal oxide complex is substituted with two or more different types of surfactants which are miscible with a metal oxide precursor and enable maintenance of luminescent and electrical properties of the nanocrystal. The nanocrystal-metal oxide complex exhibits superior optical and chemical stability and secures high luminescent efficiency of the nanocrystal. Accordingly, when the nanocrystal-metal oxide complex is used as a luminescent material of an electroluminescent device, it can improve luminescent efficiency and reliability of products. Further disclosed herein is a method for preparing the nanocrystal-metal oxide complex.
摘要:
A method for preparing a multilayer of nanocrystals. The method includes the steps of (i) coating nanocrystals surface-coordinated by a photosensitive compound, or a mixed solution of a photosensitive compound and nanocrystals surface-coordinated by a material miscible with the photosensitive compound, on a substrate, drying the coated substrate, and exposing the dried substrate to UV light to form a first monolayer of nanocrystals, and (ii) repeating the procedure of step (i) to form one or more monolayers of nanocrystals on the first monolayer of nanocrystals. Further, an organic-inorganic hybrid electroluminescence device using a multilayer of nanocrystals prepared by the method as a luminescent layer. The luminescent efficiency and luminescence intensity of the electroluminescence device can be enhanced, and the electrical properties of the electroluminescence device can be controlled by the use of the multilayer of nanocrystals as a luminescent layer.
摘要:
A metal sulfide nanocrystal manufactured by a method of reacting a metal precursor and an alkyl thiol in a solvent, wherein the alkyl thiol reacts with the metal precursor to form the metal sulfide nanocrystals, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. A metal sulfide nanocrystal manufactured with a core-shell structure by a method of reacting a metal precursor and an alkyl thiol in a solvent to form a metal sulfide layer on the surface of a core, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. These metal sulfide nanocrystals can have a uniform particle size at the nanometer-scale level, selective and desired crystal structures, and various shapes.
摘要:
Disclosed herein are heterostructure semiconductor nanowires. The heterostructure semiconductor nanowires comprise semiconductor nanocrystal seeds and semiconductor nanocrystal wires grown in a selected direction from the surface of the semiconductor nanocrystal seeds wherein the semiconductor nanocrystal seeds have a composition different from that of the semiconductor nanocrystal wires. Further disclosed is a method for producing the heterostructure semiconductor nanowires.
摘要:
Disclosed is an optoelectronic device that includes a light source, an emission layer disposed on the light source including a light emitting particle dispersed in a matrix polymer, and a polymer film disposed on the emission layer, the polymer film including a polymerized polymer of a first monomer including at least two thiol (—SH) groups and a second monomer including at least two carbon-carbon unsaturated bond-containing groups at a terminal end.