Abstract:
Methods and systems are provided for a vehicle wirelessly communicating with a central server. In one example, a method may include monitoring faults and sending engine conditions along with driver inputs to the central server for processing.
Abstract:
Methods and systems for adjusting exhaust valve timing of an engine are described. In one example, exhaust valve timing of a compression ignition engine is adjusted responsive to a difference between a commanded exhaust valve opening timing and an actual exhaust valve opening timing, the actual exhaust valve opening timing determined from cylinder pressure.
Abstract:
Methods and systems are provided for a vehicle engine including a turbocharger coupled to a hydraulic pump and hydraulic accumulator. In one example, a method may include, in response to the vehicle coming to a stop, supplying pressure to a hydraulic braking system of the vehicle from the accumulator coupled to a hydraulic pump coupled to a shaft of a turbocharger of an engine installed in the vehicle, and automatically shutting down the engine while the vehicle is stopped.
Abstract:
Various methods and systems are provided for adjusting a pilot injection during initial engine operation from vehicle manufacture. In one example, a method comprises delivering a first proportion of fuel as the pilot injection, and only decreasing the first proportion of fuel responsive to learning an injector flow characteristic.
Abstract:
Methods and systems are provided for detecting hydrocarbon ingestion into an engine based on the simultaneous monitoring of cylinder imbalance and an elevated exhaust exotherm. Crankshaft acceleration data is monitored during steady-state and transient engine conditions while exhaust temperatures are estimated during non-regeneration conditions. Engine speed and load is limited to reduce further hydrocarbon ingestion.
Abstract:
A method for diagnosing a performance issue in a vehicle system having a diesel engine, a fuel system, and an on-board diagnostic system. The method includes cranking the engine, and, if a pressure sensed in the fuel system during or after the engine cranking differs by a threshold amount from the pressure sensed during a previous operation of the engine, indicating excessive fuel viscosity in the on-board diagnostic system.
Abstract:
A method for operating a vehicle system is described herein. The method includes indicating a variable geometry turbine degradation based on a comparison of a modeled set of turbine pressure values and a sensed set of turbine pressure values, each set of turbine pressure values including a pressure value upstream of the turbine and a pressure value downstream of the turbine and the variable geometry turbine positioned downstream of an engine cylinder.
Abstract:
Methods and systems are provided for controlling an engine in a vehicle, the engine having a turbocharger, and a particulate filter upstream of a turbocharger turbine. In one example, the method comprises, under selected boosted operating conditions, injecting a reductant upstream of the filter during an exhaust stroke to generate an exothermic reaction at the filter.
Abstract:
A method for diagnosing a performance issue in a vehicle system having a diesel engine, a fuel system, and an on-board diagnostic system. The method includes cranking the engine, and, if a pressure sensed in the fuel system during or after the engine cranking differs by a threshold amount from the pressure sensed during a previous operation of the engine, indicating excessive fuel viscosity in the on-board diagnostic system.
Abstract:
Methods and systems are provided for draining water separated from diesel fuel into an EGR system. In response to the water volume in the fuel system and EGR flow at pre-determined levels, water may be introduced into the EGR system. EGR flow may also be controlled in response to introducing water into the EGR system and engine operating conditions.