Abstract:
Two or more soundproof cells arranged in a two-dimensional manner are provided. At least one of the soundproof cells is a first soundproof cell configured to include a first frame having a first through-hole. At least one of the other soundproof cells is a second soundproof cell including a second frame having a second through-hole and a film fixed to the second frame. A first shielding peak frequency, which is determined by the first through-hole of the first soundproof cell and at which a transmission loss is maximized, is present on a lower frequency side than a first natural vibration frequency of the film of the second soundproof cell, and sound in a predetermined frequency band centered on the first shielding peak frequency is selectively insulated.
Abstract:
A visual sense-and-tactile sense integrated presentation device includes a half mirror, a visual sense presentation body that presents visual information about an object and is disposed on a mirror surface side of the half mirror, and a tactile sense presentation body that presents tactile information and is disposed to face the visual sense presentation body across the mirror surface of the half mirror at an optical distance from the half mirror equal to an optical distance between the half mirror and the visual sense presentation body.
Abstract:
A surface enhanced Raman spectrometry apparatus is constituted by: a transparent substrate; a metal member that causes surface enhanced Raman scattering to occur, formed on a surface of the transparent substrate; a pressing mechanism that presses a sample placed in contact with the metal member against the metal member; a measuring light irradiating optical system that irradiates a measuring light beam onto the sample through the transparent substrate; and a light detecting section that spectrally detects Raman scattered light, which is generated when the measuring light beam is irradiated onto the sample, through the transparent substrate.
Abstract:
An optical electrical field enhancing device includes: a transparent substrate having a structure of fine protrusions and recesses on the surface thereof; and a metal structure layer of fine protrusions and recesses formed on the surface of the structure of fine protrusions and recesses. The metal structure layer of fine protrusions and recesses has a structure of fine protrusions and recesses, in which the distances among adjacent protrusions are less than the distances among corresponding adjacent protrusions of the structure of fine protrusions and recesses of the transparent substrate.
Abstract:
Provided are a heat ray-shielding material having a frame body including a plurality of frames having a cell structure and a plurality of films attached to some or all of the plurality of frames in the frame body, in which at least some of the plurality of films shield near-infrared light, and cell sizes in the plurality of frames are larger than visible light optical wavelengths, whereby the heat ray-shielding material is lightweight, capable of selectively shielding heat rays, that is, near-infrared rays, can be applied to a variety of uses, and can be independently used as movable members, easily removable members, and members having a collapsible structure, an architectural member, a cage member, and a side surface wall.
Abstract:
Using an optical electric field enhancing device including a fine uneven structure made of gold formed on the front surface of a transparent substrate, illumination light of a wavelength in the range from 400 to 530 nm is applied at least to an analyte, positional information of the analyte is detected by a position detection unit disposed on the rear surface side of the optical electric field enhancing device, and excitation light is applied to the detected position by an excitation light application unit. Signal light emitted from the analyte when the excitation light is applied is detected from the rear surface side of the transparent substrate.
Abstract:
A metal film of a measurement device including a transparent dielectric substrate is irradiated with first light from a transparent dielectric substrate side, an optical electric field enhanced by an optical electric field enhancing effect of a localized plasmon induced to a surface of the metal film by the irradiation is generated, light emitted from the transparent dielectric substrate side is detected, a specimen installed on a surface of a metal fine concavo-convex structure layer and a matrix agent are irradiated with second light from a side opposite to the side of the irradiation with the first light in a state where a voltage is applied to the metal fine concavo-convex structure layer through a voltage application electrode, an analysis target substance for mass spectrometry in the specimen is desorbed from the surface by the irradiation, and the desorbed analysis target substance is detected.
Abstract:
Performing a measurement using an optical field enhancement device which includes a transparent substrate having a transparent fine uneven structure on a surface and a metal film formed on a surface of the fine uneven structure on the surface of the substrate, in which a subject is placed on the metal film of the optical field enhancement device, then excitation light is projected onto an area of the optical field enhancement device on which the subject is placed, and light generated by the projection of the excitation light is detected from a back surface side of the transparent substrate.
Abstract:
Pixels of a mask image with which a target object is irradiated are shifted by a determined distance by sequentially turning on one light emission point or two or more light emission points of a light source with respect to a single mask pattern generated in a spatial modulation element, a pixel shift amount of the mask pattern determined by a position of the light emission point to be turned on of the light source is known, the target object is irradiated with mask images according to a plurality of mask patterns depending on the positions of the light emission point of the light source and the spatial modulation element, and a computer calculates a correlation between a light intensity detected by a detector and the mask image with which the target object is irradiated, to construct an image of the target object. With this, an imaging device and an imaging method capable of achieving an increase in speed of mask pattern irradiation in single-pixel imaging and significantly increasing an input speed of single-pixel imaging are provided.
Abstract:
A soundproof structure has at least one soundproof cell including a frame having a hole portion and a film fixed to the frame so as to cover the hole portion. The soundproof cell is disposed in an opening member having an opening in a state in which a film surface of the film is inclined with respect to an opening cross section of the opening member and a region serving as a ventilation hole, through which gas passes, is provided in the opening member.