摘要:
An integrated circuit structure includes a semiconductor substrate including a first portion in a first device region, and a second portion in a second device region. A first semiconductor fin is over the semiconductor substrate and has a first fin height. A second semiconductor fin is over the semiconductor substrate and has a second fin height. The first fin height is greater than the second fin height.
摘要:
The present disclosure provides devices and methods which provide for strained epitaxial regions. A method of semiconductor fabrication is provided that includes forming a gate structure over a fin of a semiconductor substrate and forming a recess in the fin adjacent the gate structure. A sidewall of the recess is then altered. Exemplary alterations include having an altered profile, treating the sidewall, and forming a layer on the sidewall. An epitaxial region is then grown in the recess. The epitaxial region interfaces the altered sidewall of the recess and is a strained epitaxial region.
摘要:
A method for fabricating a semiconductor device is disclosed. An exemplary embodiment of the method includes providing a substrate; forming a fin structure over the substrate; forming a gate structure, wherein the gate structure overlies a portion of the fin structure; forming a sacrificial-offset-protection layer over another portion of the fin structure; and thereafter performing an implantation process.
摘要:
An exemplary structure for a field effect transistor (FET) comprises a silicon substrate comprising a first surface; a channel portion over the first surface, wherein the channel portion has a second surface at a first height above the first surface, and a length parallel to first surface; and two source/drain (S/D) regions on the first surface and surrounding the channel portion along the length of the channel portion, wherein the two S/D regions comprise SiGe, Ge, Si, SiC, GeSn, SiGeSn, SiSn, or III-V material.
摘要:
The present disclosure provides devices and methods which provide for strained epitaxial regions. A method of semiconductor fabrication is provided that includes forming a gate structure over a fin of a semiconductor substrate and forming a recess in the fin adjacent the gate structure. A sidewall of the recess is then altered. Exemplary alterations include having an altered profile, treating the sidewall, and forming a layer on the sidewall. An epitaxial region is then grown in the recess. The epitaxial region interfaces the altered sidewall of the recess and is a strained epitaxial region.
摘要:
A structure for a field effect transistor on a substrate that includes a gate stack, an isolation structure and a source/drain (S/D) recess cavity below the top surface of the substrate disposed between the gate stack and the isolation structure. The recess cavity having a lower portion and an upper portion. The lower portion having a first strained layer and a first dielectric film. The first strained layer disposed between the isolation structure and the first dielectric film. A thickness of the first dielectric film less than a thickness of the first strained layer. The upper portion having a second strained layer overlying the first strained layer and first dielectric film.
摘要:
A semiconductor device and method of fabricating thereof is described that includes a substrate having a fin with a top surface and a first and second lateral sidewall. A hard mask layer may be formed on the top surface of the fin (e.g., providing a dual-gate device). A gate dielectric layer and work function metal layer are formed on the first and second lateral sidewalls of the fin. A silicide layer is formed on the work function metal layer on the first and the second lateral sidewalls of the fin. The silicide layer may be a fully-silicided layer and may provide a stress to the channel region of the device disposed in the fin.
摘要:
In a method for forming FinFETs, a photo resist is formed to cover a first semiconductor fin in a wafer, wherein a second semiconductor fin adjacent to the first semiconductor fin is not covered by the photo resist. An edge of the photo resist between and parallel to the first and the second semiconductor fins is closer to the first semiconductor fin than to the second semiconductor fin. A tilt implantation is performed to form a lightly-doped source/drain region in the second semiconductor fin, wherein the first tilt implantation is tilted from the second semiconductor fin toward the first semiconductor fin.
摘要:
In a method for forming FinFETs, a photo resist is formed to cover a first semiconductor fin in a wafer, wherein a second semiconductor fin adjacent to the first semiconductor fin is not covered by the photo resist. An edge of the photo resist between and parallel to the first and the second semiconductor fins is closer to the first semiconductor fin than to the second semiconductor fin. A tilt implantation is performed to form a lightly-doped source/drain region in the second semiconductor fin, wherein the first tilt implantation is tilted from the second semiconductor fin toward the first semiconductor fin.
摘要:
A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate and a 3D structure disposed over the substrate. The semiconductor device further includes a dielectric layer disposed over the 3D structure, a WFMG layer disposed over the dielectric layer, and a gate structure disposed over the WFMG layer. The gate structure traverses the 3D structure and separates a source region and a drain region of the 3D structure. The source and drain region define a channel region therebetween. The gate structure induces a stress in the channel region.