Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to an LDMOS device on FDSOI structures and methods of manufacture. The laterally double diffused semiconductor device includes a gate dielectric composed of a buried insulator material of a semiconductor on insulator (SOI) technology, a channel region composed of semiconductor material of the SOI technology and source/drain regions on a front side of the buried insulator material such that a gate is formed on a back side of the buried insulator material. The gate terminal can also be placed at a hybrid section used as a back-gate voltage to control the channel and the drift region of the device.
Abstract:
A capacitor, such as an N-well capacitor, in a semiconductor device includes a floating semiconductor region, which allows a negative biasing of the channel region of the capacitor while suppressing leakage into the depth of the substrate. In this manner, N-well-based capacitors may be provided in the device level and may have a substantially flat capacitance/voltage characteristic over a moderately wide range of voltages. Consequently, alternating polarity capacitors formed in the metallization system may be replaced by semiconductor-based N-well capacitors.
Abstract:
Capacitive structures in the device level of sophisticated MOS devices may be formed so as to exhibit a significantly reduced capacitance/voltage variability. To this end, a highly doped semiconductor region may be formed in the “channel” of the capacitive structure. For example, for a specified concentration of the dopant species and a specified range of the vertical dimension of the highly doped semiconductor region, a reduced variability of approximately 3% or less may be obtained for a voltage range of, for example, ±5 V.
Abstract:
Methods of forming a semiconductor device structure at advanced technology nodes and respective semiconductor device structures are provided at advanced technology nodes, i.e., smaller than 100 nm. In some illustrative embodiments, a fluorine implantation process for implanting fluorine at least into a polysilicon layer formed over a dielectric layer structure is performed prior to patterning the gate dielectric layer structure and the polysilicon layer for forming a gate structure and implanting source and drain regions at opposing sides of the gate structure.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a structure having an n-channel gate stack and a p-channel gate stack formed over a semiconductor substrate. The method includes forming halo implant regions in the semiconductor substrate adjacent the p-channel gate stack and forming extension implant regions in the semiconductor substrate adjacent the p-channel gate stack. The method further includes annealing the halo implant regions and the extension implant regions in the semiconductor substrate adjacent the p-channel gate stack by performing a laser anneal process. Also, the method forms extension implant regions in the semiconductor substrate adjacent the n-channel gate stack.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to an LDMOS device on FDSOI structures and methods of manufacture. The laterally double diffused semiconductor device includes a gate dielectric composed of a buried insulator material of a semiconductor on insulator (SOI) technology, a channel region composed of semiconductor material of the SOI technology and source/drain regions on a front side of the buried insulator material such that a gate is formed on a back side of the buried insulator material. The gate terminal can also be placed at a hybrid section used as a back-gate voltage to control the channel and the drift region of the device.
Abstract:
Device structures for a field-effect transistor and methods of forming a device structure for a field-effect transistor. A channel region is arranged laterally between a first source/drain region and a second source/drain region. The channel region includes a first semiconductor layer and a second semiconductor layer arranged over the first semiconductor layer. A gate structure is arranged over the second semiconductor layer of the channel region The first semiconductor layer is composed of a first semiconductor material having a first carrier mobility. The second semiconductor layer is composed of a second semiconductor material having a second carrier mobility that is greater than the first carrier mobility of the first semiconductor layer.
Abstract:
A semiconductor structure includes a nonvolatile memory cell including a source region, a channel region and a drain region that are provided in a semiconductor material. The channel region includes a first portion adjacent the source region and a second portion between the first portion of the channel region and the drain region. An electrically insulating floating gate is provided over the first portion of the channel region. The nonvolatile memory cell further includes a select gate and a control gate. The first portion of the select gate is provided over the second portion of the channel region. The second portion of the select gate is provided over a portion of the floating gate that is adjacent to the first portion of the select gate. The control gate is provided over the floating gate and adjacent to the second portion of the select gate.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a structure having an n-channel gate stack and a p-channel gate stack formed over a semiconductor substrate. The method includes forming halo implant regions in the semiconductor substrate adjacent the p-channel gate stack and forming extension implant regions in the semiconductor substrate adjacent the p-channel gate stack. The method further includes annealing the halo implant regions and the extension implant regions in the semiconductor substrate adjacent the p-channel gate stack by performing a laser anneal process. Also, the method forms extension implant regions in the semiconductor substrate adjacent the n-channel gate stack.
Abstract:
Methods of forming a semiconductor device structure at advanced technology nodes and respective semiconductor device structures are provided at advanced technology nodes, i.e., smaller than 100 nm. In some illustrative embodiments, a fluorine implantation process for implanting fluorine at least into a polysilicon layer formed over a dielectric layer structure is performed prior to patterning the gate dielectric layer structure and the polysilicon layer for forming a gate structure and implanting source and drain regions at opposing sides of the gate structure.