Abstract:
Embodiments of the disclosure provide a probe structured for electrical and photonics testing of a photonic integrated circuit (PIC) die, the probe including: a membrane having a first surface and an opposing second surface and including conductive traces, the membrane being configured for electrical coupling to a probe interface board (PIB); a set of probe tips positioned on the membrane, the set of probe tips being configured to send electrical test signals to the PIC die or receive electrical test signals from the PIC die; and a photonic test assembly disposed on the membrane and electrically coupled to the conductive traces of the membrane, the photonic test assembly positioned for substantial alignment with a photonic I/O element of the PIC die, wherein the photonic test assembly is configured to transmit a photonic input signal to the photonic I/O element or detect a photonic output signal from the photonic I/O element.
Abstract:
The disclosure relates to an apparatus and a method for vector scattering parameter (s-parameter) measurements, and more particularly, to an apparatus and a method for providing a simple, low cost solution for tests requiring vector s-parameter measurements. The apparatus includes a source which provides an input signal, a divider which splits the input signal to a reference signal and a testing signal, a phase shifter which shifts the reference signal by a first phase and outputs a phase shifted signal, a device under test (DUT) which shifts the testing signal by a second phase and outputs a DUT shifted signal, a combiner which combines the phase shifted signal and the DUT shifted signal into a combined signal, and a detector which detects a product of the phase shifted signal and the DUT shifted signal.
Abstract:
Device structures for a bipolar junction transistor and methods of fabricating a device structure for a bipolar junction transistor. A base layer comprised of a first semiconductor material is formed. An emitter layer comprised of a second semiconductor material is formed on the base layer. The emitter layer is patterned to form an emitter finger having a length and a width that changes along the length of the emitter finger.
Abstract:
Device structures for a bipolar junction transistor and methods of fabricating a device structure for a bipolar junction transistor. A base layer comprised of a first semiconductor material is formed. An emitter layer comprised of a second semiconductor material is formed on the base layer. The emitter layer is patterned to form an emitter finger having a length and a width that changes along the length of the emitter finger.
Abstract:
Methods for forming a device structure and device structures using a silicon-on-insulator substrate that includes a high-resistance handle wafer. A doped region is formed in the high-resistance handle wafer. A first trench is formed that extends through a device layer and a buried insulator layer of the silicon-on-insulator substrate to the high-resistance handle wafer. The doped region includes lateral extension of the doped region extending laterally of the first trench. A semiconductor layer is epitaxially grown within the first trench, and a device structure is formed using at least a portion of the semiconductor layer. A second trench is formed that extends through the device layer and the buried insulator layer to the lateral extension of the doped region, and a conductive plug is formed in the second trench. The doped region and the plug comprise a body contact.
Abstract:
Embodiments of the present invention provide an apparatus and method for wafer thinning endpoint detection. Embodiments of the present invention utilize through silicon via (TSV) structures formed in the wafer. A specially made wafer handle is bonded to the wafer. Conductive slurry is used in the wafer backside thinning process. The wafer handle provides electrical connectivity to an electrical measurement tool, and conductive posts in the wafer handle are proximal to a test structure on the wafer. A plurality of electrically isolated TSVs is monitored via the electrical measurement tool. When the TSVs are exposed on the backside as a result of thinning, the conductive slurry shorts the electrically isolated TSVs, changing the electrical properties of the plurality of TSVs. The change in electrical properties is detected and used to trigger termination of the wafer backside thinning process.
Abstract:
Embodiments of the present disclosure relate to separating an integrated circuit (IC) structure from an adjacent chip. An IC structure according to embodiments of the disclosure may include: a semiconductor region including an interconnect pad positioned thereon, the interconnect pad electrically connected to a solder bump; and an ohmic heating wire positioned within the semiconductor region and in thermal communication with the interconnect pad, wherein the ohmic heating wire is configured to be heated above a melting temperature of the solder bump.
Abstract:
Embodiments of the present disclosure relate to separating an integrated circuit (IC) structure from an adjacent chip. An IC structure according to embodiments of the disclosure may include: a semiconductor region including an interconnect pad positioned thereon, the interconnect pad electrically connected to a solder bump; and an ohmic heating wire positioned within the semiconductor region and in thermal communication with the interconnect pad, wherein the ohmic heating wire is configured to be heated above a melting temperature of the solder bump.
Abstract:
Chip packages and methods of forming a chip package. The chip package includes a power amplifier and a thermal pathway structure configured to influence transport of heat energy. The power amplifier includes a first emitter finger and a second emitter finger having at least one parameter that is selected based upon proximity to the thermal pathway structure.
Abstract:
Various embodiments include inductor structures including at least one air gap for reducing capacitance between windings in the inductor structure. One embodiment includes an inductor structure having: a substrate; an insulation layer overlying the substrate; a conductive winding overlying the substrate within the insulation layer, the conductive winding wrapped around itself to form a plurality of turns substantially concentric about a central axis; an insulating structural support containing an air gap between the conductive winding and the insulation layer, the insulating structural support at least one of under, over or surrounding the plurality of turns of the conductive winding or between adjacent turns in the conductive winding; and at least one insulation pocket located radially inside a radially innermost turn in the plurality of turns with respect to the central axis.