Abstract:
Evaluation of electrical accessibility within a layer of a circuit to pin geometries residing within a cell boundary of the circuit is provided. The evaluating includes, for instance, checking along substantially parallel pin geometry access paths of the layer to determine possible points at which a respective pin geometry of the pin geometries within the cell boundary may be accessed. The evaluating also includes identifying which points of the possible points are accessible access points by any route of the possible routes for electrically connecting to a respective pin geometry of the pin geometries from a first side or a second side of the cell boundary, wherein at least one point of the possible points is identified as not being an accessible access point based on the at least one point being inaccessible by the possible routes.
Abstract:
At least one method, apparatus and system disclosed herein for forming a finFET device having a pass-through structure. A first gate structure and a second gate structure are formed on a semiconductor wafer. A first active area is formed on one end of the first and second gate structures. A second active area is formed on the other end of the first and second gate structures. A trench silicide (TS) structure self-aligned to the first and second gate structures is formed. The TS structure is configured to operatively couple the first active area to the second active area.
Abstract:
A semiconductor structure includes a substrate having a plurality of semiconductor devices disposed therein. A dielectric layer is disposed over the substrate. A plurality of substantially parallel metal lines are disposed in the dielectric layer. The metal lines include active lines for routing signals to and from the devices, and dummy lines which do not route signals to and from the devices. Signal cuts are disposed in the active lines. The signal cuts define tips of the active lines. Assist cuts are disposed exclusively in the dummy lines and do not define tips of the active lines. The assist cuts are located proximate the signal cuts such that a first density of assist cuts and signal cuts in an area surrounding the signal cuts is substantially greater than a second density of signal cuts alone in the same area.
Abstract:
At least one method, apparatus and system disclosed involves a circuit layout for an integrated circuit device comprising a plurality of wider-than-default metal formations for a functional cell. A design for an integrated circuit device is received. The design comprises at least one functional cell. A first pair of wide metal formations are provided. The first pair of wide metal formations comprise a first metal formation and a second metal placed about a first cell boundary of the functional cell for providing additional space for routing, for high-drive routing, and/or for power routing.
Abstract:
One method disclosed herein involves, among other things, generating a set of mandrel mask rules, block mask rules and a virtual, software-based non-mandrel-metal mask. The method also includes creating a set of virtual non-mandrel mask rules that is a replica of the mandrel mask rules, generating a set of metal routing design rules based upon the mandrel mask rules, the block mask rules and the virtual non-mandrel mask rules, generating the circuit routing layout based upon the metal routing design rules, decomposing the circuit routing layout into a mandrel mask pattern and a block mask pattern, generating a first set of mask data corresponding to the mandrel mask pattern, and generating a second set of mask data corresponding to the block mask pattern.
Abstract:
One method includes forming a mandrel element above a hard mask layer, forming first and second spacers on the mandrel element, removing the mandrel element, a first opening being defined between the first and second spacers and exposing a portion of the hard mask layer and having a longitudinal axis extending in a first direction, forming a block mask covering a middle portion of the first opening, the block mask having a longitudinal axis extending in a second direction different than the first direction, etching the hard mask layer in the presence of the block mask and the first and second spacers to define aligned first and second line segment openings in the hard mask layer extending in the first direction, etching recesses in a dielectric layer disposed beneath the hard mask layer based on the first and second line segment openings, and filling the recesses with a conductive material.
Abstract:
Methods for routing a metal routing layer based on mask design rules and the resulting devices are disclosed. Embodiments may include laying-out continuous metal lines in a semiconductor design layout, and routing, by a processor, a metal routing layer using the continuous metal lines according to placement of cut or block masks based on cut or block mask design rules.
Abstract:
Methodologies and an apparatus enabling a generation of color undeterminable polygons in IC designs are disclosed. Embodiments include: determining a plurality of first routes extending horizontally in an IC design, each of the plurality of first routes being placed on one of a plurality of equally spaced vertical positions of the IC design; determining whether a second route overlaps one of the vertical positions of the plurality of equally spaced vertical positions; and selecting a design rule for the second route based on the determination of whether the second route overlaps.
Abstract:
Semiconductor device structures are provided. An exemplary semiconductor device structure includes a substrate of a semiconductor material and a gate structure overlying the substrate. The semiconductor substrate further includes a doped region formed in the substrate proximate the gate structure and a first dielectric material overlying the doped region. The semiconductor substrate also includes a conductive contact formed in the first dielectric material, the conductive contact being electrically connected to the doped region, and a dielectric cap overlying the conductive contact.
Abstract:
Embodiments described herein provide approaches for improving a standard cell connection for circuit routing. Specifically, provided is an IC device having a plurality of cells, a first metal layer (M1) pin coupled to a contact bar extending from a first cell of the plurality of cells, and a second metal layer (M2) wire coupled to the contact bar, wherein the contact bar extends across at least one power rail. By extending the contact bar into an open area between the plurality of cells to couple the M1 pin and the M2 wire, routing efficiency and chip scaling are improved.