Abstract:
A method of forming contacts includes forming a plurality of transistor devices separated by shallow trench insulator regions, the transistor devices each comprising a semiconductor substrate, a buried insulator layer on the semiconductor bulk substrate, a semiconductor layer on the buried insulator layer, a high-k metal gate stack on the semiconductor layer and a gate electrode above the high-k metal gate stack, raised source/drain regions on the semiconductor layer, and a silicide contact layer above the raised source/drain regions and the gate electrode, providing an interlayer dielectric stack on the silicide contact layer and planarizing the interlayer dielectric stack, patterning a plurality of contacts through the interlayer dielectric stack onto the raised source/drain regions, and, for at least some of the contacts, patterning laterally extended contact regions above the contacts, the laterally extended contact regions extending over shallow trench insulator regions neighboring the corresponding raised source/drain regions.
Abstract:
At least one method, apparatus and system disclosed involves providing a design for manufacturing a semiconductor device. A first functional cell having a first width is placed on a circuit layout. A determination is made as to whether at least one transistor of the first functional cell is to be forward biased or reversed biased. A second functional cell having a second width is placed adjacent to the first functional cell on the circuit layout for providing a first biasing well within the total width of the first and second functional cells in response to determining that the at least one transistor is to be forward biased or reversed biased.
Abstract:
At least one method, apparatus and system disclosed involves providing a design for manufacturing a semiconductor device. A first functional cell having a first width is placed on a circuit layout. A determination is made as to whether at least one transistor of the first functional cell is to be forward biased or reversed biased. A second functional cell having a second width is placed adjacent to the first functional cell on the circuit layout for providing a first biasing well within the total width of the first and second functional cells in response to determining that the at least one transistor is to be forward biased or reversed biased.
Abstract:
Methods for a low voltage antifuse device and the resulting devices are disclosed. Embodiments may include forming a plurality of fins above a substrate, removing a portion of a fin, forming a fin tip, forming a first area of a gate oxide layer above at least the fin tip, forming a second area of the gate oxide layer above a remaining portion of the plurality of fins, wherein the first area is thinner than the second area, and forming a gate over at least the fin tip to form an antifuse one-time programmable device.
Abstract:
Methods for forming a variable fin FinFET cell wherein a plurality of fins is formed above a substrate, a portion of a fin is removed, forming a fin tip, a first area of a gate oxide layer is formed above the fin tip, and a second area of the gate oxide layer is formed above at least a remaining portion of the plurality of fins, wherein the first area is thicker than the second area.
Abstract:
An approach for methodology, and an associated system, enabling a prioritizing of devices, circuits, and modules of interest is disclosed. Embodiments include: determining a first electrical layout indicating an electrical performance of a physical layout of an IC design, the first electrical layout indicating a plurality of devices of the physical layout; selecting a subset of the plurality of the devices based on one or more connections of the devices; and generating a second electrical layout indicating the electrical performance of the physical layout, the second electrical layout indicating the selected devices without at least one of the plurality of devices.
Abstract:
At least one method, apparatus and system disclosed involves an antenna diode design for a semiconductor device. A first common diode operatively coupled to a ground node and to a p-well layer serving as an isolated p-well that is formed over a deep n-well that is adjacent to an n-well in a semiconductor device is provided. A first antenna diode formed on the isolated p-well operatively coupled to the p-well layer and operatively coupled to a first signal line of the semiconductor device is provided for discharging accumulated charges on the first signal line. A second antenna diode formed on the isolated p-well operatively coupled to the p-well layer and operatively coupled to a second signal line of semiconductor device is provided for discharging accumulated charges on the second signal line.
Abstract:
Methods of fabricating an integrated circuit with a fin-based fuse, and the resulting integrated circuit with a fin-based fuse are provided. In the method, a fin is created from a layer of semiconductor material and has a first end and a second end. The method provides for forming a conductive path on the fin from its first end to its second end. The conductive path is electrically connected to a programming device that is capable of selectively directing a programming current through the conductive path to cause a structural change in the conductive path to increase resistance across the conductive path.
Abstract:
Embodiments of the present invention provide an improved decoupling capacitor structure. A contact region is disposed over a source/drain region of the decoupling capacitor structure. Each contact region is formed as a plurality of segments, wherein an inter-segment gap separates a segment of the plurality of segments from an adjacent segment of the plurality of segments. Embodiments may include multiple contact regions between two gate regions. Arrays of decoupling capacitors may arranged as an alternating “checkerboard” pattern of P-well and N-well structures, and may be oriented at a diagonal angle to a metallization layer to facilitate connections of multiple decoupling capacitors within the array.
Abstract:
An OTP anti-fuse memory array without additional selectors and a manufacturing method are provided. Embodiments include forming wells of a first polarity in a substrate, forming a bitline of the first polarity in each well, and forming plural metal gates across each bitline, wherein no source/drain regions are formed between the metal gates.