Abstract:
Methods, compositions and articles of manufacture involving conformationally flexible conjugated polymers are provided. A structure is provided comprising the conformationally flexible conjugated polymer bound to or associated with at least one member of a binding pair comprising a sensor molecule and a target molecule or the complex they form. The conformationally flexible conjugated polymer comprises at least one angled linker having bonds to its two adjacent polymeric units which form an angle of less than about 155° with respect to one another. Methods of use of such structures and solutions comprising them are also provided.
Abstract:
Methods, compositions and articles of manufacture involving cationic conjugated conformationally flexible polymers are provided. A method for the synthesis of cationic water-soluble polymers with linkages along the polymer main chain structure which disrupt the ability of the polymers to form extended-rod structures is provided. Such polymers may serve in the fabrication of novel optoelectronic devices and in the development of highly efficient biosensors. The invention further relates to the application of these polymers in assay methods.
Abstract:
The invention relates to methods, articles and compositions for the detection and analysis of biomolecules in a sample. Provided assays include those determining the presence of a target biomolecule in a sample or its relative amount, or the assays may be quantitative or semi-quantitative. The methods can be performed in an array format on a substrate.
Abstract:
This invention relates to an aggregation sensor useful for the detection and analysis of aggregants in a sample, and methods, articles and compositions relating to such a sensor. The sensor comprises first and second optically active units, where energy may be transferred from an excited state of the first optically active unit to the second optically active unit. The second optically active unit is present in a lesser amount, but its relative concentration is increased upon aggregation, increasing its absorption of energy from the first optically active units. This increase in energy transfer can be detected in variety of formats to produce an aggregation sensing system for various aggregants, including for quantitation. Other variations of the inventions are described further herein.
Abstract:
Methods, compositions and articles of manufacture involving soluble conjugated polymers are provided. The conjugated polymers have a sufficient density of polar substituents to render them soluble in a polar medium, for example water and/or methanol. The conjugated polymer may desirably comprise monomers which alter its conductivity properties. In some embodiments, the inventors have provided cationic conjugated polymers (CCPs) comprising both solubilizing groups and conductive groups, resulting in conductive conjugated polymers soluble in polar media. The different solubility properties of these polymers allow their deposition in solution in multilayer formats with other conjugated polymers. Also provided are articles of manufacture comprising multiple layers of conjugated polymers having differing solubility characteristics. Embodiments of the invention are described further herein.
Abstract:
This invention relates to an aggregation sensor useful for the detection and analysis of aggregants in a sample, and methods, articles and compositions relating to such a sensor. The sensor comprises first and second optically active units, where energy may be transferred from an excited state of the first optically active unit to the second optically active unit. The second optically active unit is present in a lesser amount, but its relative concentration is increased upon aggregation, increasing its absorption of energy from the first optically active units. This increase in energy transfer can be detected in variety of formats to produce an aggregation sensing system for various aggregants, including for quantitation. Other variations of the inventions are described further herein.
Abstract:
Methods, compositions and articles of manufacture involving cationic conjugated conformationally flexible polymers are provided. A method for the synthesis of cationic water-soluble polymers with linkages along the polymer main chain structure which disrupt the ability of the polymers to form extended-rod structures is provided. Such polymers may serve in the fabrication of novel optoelectronic devices and in the development of highly efficient biosensors. The invention further relates to the application of these polymers in assay methods.
Abstract:
FIG. 1 is a front and top perspective view of a card box showing my new design; FIG. 2 is a front view thereof; FIG. 3 is a rear view thereof; FIG. 4 is a left view thereof; FIG. 5 is a right view thereof; FIG. 6 is a top view thereof; FIG. 7 is a bottom view thereof; FIG. 8 is a partially exploded perspective view thereof, showing a top portion removed, and a middle portion and a bottom portion partially assembled; FIG. 9 is an exploded perspective view thereof, showing a top, middle and a bottom portion; and, FIG. 10 is an exploded perspective view thereof.
Abstract:
Flavonoid compounds may be prepared that are selective for certain cell organelles, and may be used as biological imaging agents. Organelles that may be imaged with flavonoid compounds include mitochondria and lysosomes. Advantageously, the flavonoids show specificity to certain organelles and may exhibit a florescence “turn-on” mechanism, where the flavonoids that have target an organelle exhibit a florescence response when excited.
Abstract:
Semiconductor devices are provided including an active layer, a gate structure, a spacer, and a source/drain layer. The active layer is on the substrate and includes germanium. The active layer includes a first region having a first germanium concentration, and a second region on both sides of the first region. The second region has a top surface getting higher from a first portion of the second region adjacent to the first region toward a second portion of the second region far from the first region, and has a second germanium concentration less than the first germanium concentration. The gate structure is formed on the first region of the active layer. The spacer is formed on the second region of the active layer, and contacts a sidewall of the gate structure. The source/drain layer is adjacent to the second region of the active layer.