Abstract:
A control method using a continuous variable duration apparatus provided to adjust opening duration of an intake valve of an engine includes: determining a reduction amount of a compression ratio to prevent knocking, when knocking of an engine is expected, setting a desired effective compression ratio required for the reduction amount of the effective compression ratio, setting desired duration for the set desired effective compression ratio, and controlling duration of the intake valve on the basis of the set desired duration.
Abstract:
A continuous variable valve duration apparatus includes a camshaft, a cam unit on which a cam is formed and the camshaft is inserted, a guide bracket of which an upper guide boss is formed, an inner wheel transmitting the rotation of the camshaft to the cam unit, a wheel housing of which a guide shaft having a guide thread formed thereto to be movably inserted into the upper guide boss is formed thereto, and of which a tail guide guiding the relative movement of the guide bracket is formed thereto, and the wheel housing into which the inner wheel is rotatably inserted, a worm wheel of which an inner thread engaged with the guide thread is formed on inside thereof and of which an outer thread is formed on outside thereof, and a tolerance adjusting pin inserted into the tolerance adjusting portion.
Abstract:
A continuous variable valve duration apparatus includes a camshaft, a cam unit on which a cam is formed and the camshaft is inserted, a guide bracket of which an upper guide boss is formed, an inner wheel transmitting the rotation of the camshaft to the cam unit, a wheel housing of which a guide shaft having a guide thread formed thereto to be movably inserted into the upper guide boss is formed thereto, and of which a tail guide guiding the relative movement of the guide bracket is formed thereto, and the wheel housing into which the inner wheel is rotatably inserted, a worm wheel of which an inner thread engaged with the guide thread is formed on inside thereof and of which an outer thread is formed on outside thereof, and a tolerance adjusting pin inserted into the tolerance adjusting portion.
Abstract:
A method for controlling intake and exhaust valves of an engine includes: controlling, by an intake continuous variable valve timing (CVVT) device and an exhaust CVVT device, opening and closing timings of the intake valve and exhaust valves; determining, by a controller, a target opening duration of the intake and exhaust valves based on an engine load and an engine speed; modifying, by an intake continuous variable valve duration (CVVD) device and by an exhaust two-stage variable valve duration device, current opening and closing timings of the intake valve and exhaust valve based on the target opening durations. In particular, the exhaust two-stage VVD device switches a current opening duration of the exhaust valve to a first exhaust opening duration or a second exhaust opening duration which is shorter than the first opening duration based on the target opening duration of the exhaust valve.
Abstract:
A method of controlling oxygen purge of a three-way catalyst may include: performing a fuel cut-off; determining whether a fuel cut-in condition is satisfied after the fuel cut-off; calculating an optimum valve overlap according to an intake amount, an engine rotation speed, and an ignition timing if the fuel cut-in condition is satisfied after the fuel cut-off; controlling a CVVD apparatus to be at the optimum valve overlap; and performing the oxygen purge at the optimum valve overlap.
Abstract:
A continuous variable valve duration apparatus may include a camshaft, a cam unit on which a cam is formed, of which the camshaft is inserted thereto and of which a relative phase angle with respect to the camshaft is variable, an inner bracket transmitting rotation of the camshaft to the cam unit, a wheel housing in which the inner bracket is rotatably inserted, on which a guide groove parallel to the camshaft is formed, and on which a guide hole vertical to the camshaft is formed, a guide portion including a guide shaft inserted into the guide hole for guiding movement of the wheel housing and a control portion including a control shaft disposed parallel to the camshaft and inserted into the guide groove, and the control portion selectively rotating the control shaft for the relative position of the wheel housing with respect to the camshaft to be changed.
Abstract:
A continuously variable valve duration apparatus may include: a camshaft; a cam unit on which a cam is formed, and the camshaft inserted to the cam; an inner wheel for transmitting rotation of the camshaft to the cam unit; a wheel housing into which the inner wheel is rotatably inserted and movable perpendicular to the camshaft; a guide shaft on which a guide screw thread is formed and disposed perpendicular to the camshaft; a worm wheel formed with an inner screw thread for engaging with the guide screw thread, and the worm wheel disposed within the wheel housing; and a control shaft on which a control worm for engaging with the worm wheel is formed.
Abstract:
The present disclosure provides a system and a method for controlling valve timing of continuous variable valve duration engine. The method includes: classifying control regions depending on engine speed and engine load; applying a maximum duration to an intake valve and controlling valve overlap between the intake valve and an exhaust valve in a first control region; applying the maximum duration to the intake valve and reducing the valve overlap by using exhaust valve closing (EVC) timing in a second control region; advancing intake valve closing (IVC) timing according to an increase of the engine load in a third control region; controlling a throttle valve to be fully opened and controlling the EVC timing to an angle after top dead center in a fourth control region; and controlling the throttle valve to be fully opened and controlling the IVC timing according to the engine speed in a fifth control region.
Abstract:
A method for controlling valve timing is provided for an engine including a continuous variable valve duration device disposed on an intake valve side, and a continuous variable valve duration device and continuous variable valve timing device disposed on an exhaust valve side. The method includes: classifying first, second, third, fourth, and fifth control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling a valve overlap in the first control region; applying the maximum duration to the intake valve and exhaust valve in the second control region; controlling a manifold absolute pressure (MAP) of an intake manifold to be maintained consistently in the third control region; controlling a wide open throttle valve (WOT) and retarding an exhaust valve opening (EVO) timing in the fourth control region; and controlling the WOT and retarding an intake valve closing (IVC) timing in the fifth control region.
Abstract:
A method for controlling valve timing is provided for a turbo engine provided with a continuous variable valve duration (CVVD) device, a two stage variable valve duration device (VVD) and a continuous variable valve timing (CVVT) device. The method includes: classifying control regions; retarding an intake valve closing (IVC) timing and controlling an exhaust valve to limit a valve overlap in a first region; applying a maximum duration to an intake valve and applying a long duration to the exhaust valve in a second region; applying the long duration to the exhaust valve and advancing the IVC timing in a third region; controlling a throttle valve to be fully opened, applying a short duration to the exhaust valve and retarding an exhaust valve opening (EVO) timing in a fourth region; and controlling the throttle valve to be fully, applying the long duration to the exhaust valve and retarding the IVC timing in a fifth region.