摘要:
A method of forming an opening in a stack of insulator layers featuring an underlying etch stop layer comprised of a tri-layer insulator composite, has been developed. The tri-layer insulator composite comprised of a bottom silicon rich, silicon oxide layer and a top silicon nitride layer, is first formed on a conductive region of a semiconductor substrate. After deposition of overlying insulator layers a photoresist shape is used as a etch mask to allow the desired contact or via hole shape to be defined in the overlying insulator layers via a first phase of an anisotropic dry etch procedure, with the first phase of the dry etching procedure terminating at the top surface of the silicon nitride layer. An over etch procedure used to insure complete removal of overlying insulator layer from the surface of the tri-layer insulator composite, is next performed as a second phase of the anisotropic dry etch procedure. The high etch rate ratio of insulator layer to silicon nitride allows the over etch cycle to be successfully accomplished without risk to underlying materials. A third phase of the anisotropic dry etch procedure selectively removes the silicon nitride layer and subsequently selectively removes the silicon rich, silicon oxide layer without damage to the now exposed conductive region, resulting in definition of the desired contact or via hole openings in the stack of insulator layers.
摘要:
A method of depositing a plasma enhanced CVD metal nitride layer over an exposed copper surface in a semiconductor wafer manufacturing process to improve the metal nitride layer adhesion and to reduce copper hillock formation including providing a process surface which is an exposed copper surface; preheating the process surface; plasma sputtering the exposed copper surface in-situ to remove copper oxides; and, depositing a metal nitride layer in-situ according to a plasma enhanced CVD process at a selected deposition pressure to reduce plasma ion bombardment energy transfer and to suppress-copper hillock formation.
摘要:
A method of reducing an electrical charge imbalance on a wafer process surface including providing a semiconductor wafer having a process surface including an upper most first material layer; cleaning the process surface according to a wafer cleaning process including at least one of spraying and scrubbing to produce an electrical charge imbalance at the process surface; and, subjecting the process surface to a nitrogen containing plasma treatment to at least partially neutralize the electrical charge imbalance.
摘要:
A method for reducing contaminants in a processing chamber 10 having chamber plasma processing region components comprising the following steps. The chamber plasma processing region components are cleaned. The chamber is then seasoned as follows. A first USG layer is formed over the chamber plasma processing region components. An FSG layer is formed over the first USG layer. A second USG layer is formed over the FSG layer. Wherein the USG, FSG, and second USG layers comprise a UFU season film. A UFU season film coating the chamber plasma processing region components of a processing chamber comprises: an inner USG layer over the chamber plasma processing region components; an FSG layer over the inner USG layer; and an outer USG layer over the FSG layer.
摘要:
Two problems seen in CMP as currently executed are a tendency for slurry particles to remain on the surface and the formation of a final layer of oxide. These problems have been solved by adding to the slurry a quantity of TMAH or TBAH. This has the effect of rendering the surface being polished hydrophobic. In that state a residual layer of oxide will not be left on the surface at the conclusion of CMP. Nor will many slurry abrasive particles remain cling to the freshly polished surface. Those that do are readily removed by a simple rinse or buffing. As an alternative, the CMP process may be performed in three stages—first convention CMP, then polishing in a solution of TMAH or TBAH, and finally a gentle rinse or buffing.
摘要:
A substrate is provided having semiconductor device structures formed in and on the substrate. The semiconductor device structures comprise conductor layers embedded in openings in dielectric layers having a dielectric constant of less than 4.5. The dielectric layer has a roughness between the dielectric and the conductor wherein the roughness of the dielectric layer divided by the thickness of a barrier layer underlying the conductor layer is 0 to 1. The integrated circuit structure is prepared for failure analysis by removing the low dielectric constant dielectric layers and exposing the conductor layers for further failure analysis by optical examination or scanning electron microscope (SEM).
摘要:
A method for forming a composite barrier layer that also functions as an etch stop in a damascene process is disclosed. A SiC layer is deposited on a substrate in a CVD process chamber followed by deposition of a silicon nitride layer to complete the composite barrier layer. The SiC layer exhibits excellent adhesion to a copper layer in the substrate and is formed by a method that avoids reactive Si+4 species and thereby prevents CuSiX formation. The silicon nitride layer thickness is sufficient to provide superior barrier capability to metal ions but is kept as thin as possible to minimize the dielectric constant of the composite barrier layer. The composite barrier layer provides excellent resistance to copper oxidation during oxygen ashing steps and enables a copper layer to be fabricated with a lower leakage current than when a conventional silicon nitride barrier layer is employed.
摘要翻译:公开了一种用于形成复合阻挡层的方法,该复合阻挡层也用作镶嵌工艺中的蚀刻停止。 将SiC层沉积在CVD处理室中的衬底上,随后沉积氮化硅层以完成复合势垒层。 SiC层对衬底中的铜层表现出优异的粘附性,并且通过避免反应性Si + 4+物质并由此防止CuSi X X形成的方法形成。 氮化硅层的厚度足以为金属离子提供优异的阻挡能力,但保持尽可能的薄,以使复合阻挡层的介电常数最小化。 复合阻挡层在氧化灰化步骤期间提供优异的铜氧化性能,并且与使用常规氮化硅阻挡层相比,能够以较低的漏电流制造铜层。
摘要:
A method for fabricating a dielectric layer provides for use of a carbon source material separate from a halogen source material when forming a carbon and halogen doped silicate glass dielectric layer. The use of separate carbon and halogen source materials provides enhanced process latitude when forming the carbon and halogen doped silicate glass dielectric layer. Such a carbon and halogen doped silicate glass dielectric layer having a dielectric constant greater than about 3.0 is particularly useful as an intrinsic planarizing stop layer within a damascene method. A bilayer dielectric layer construction comprising a carbon and halogen doped silicate glass and a carbon doped silicate glass dielectric layer absent halogen doping is useful within a dual damascene method.
摘要:
A method is disclosed for reducing metal diffusion in a semiconductor device. After forming a first metal portion over a substrate, a silicon carbon nitro-oxide (SiCNO) layer is deposited on the first metal portion. A dielectric layer is deposited over the SiCNO layer, and an opening is generated in the SiCNO layer and the dielectric layer for a second metal portion to be connected to the first metal portion, wherein the SiCNO layer reduces the diffusion of the first metal portion into the dielectric layer.
摘要:
A semiconductor processing apparatus and method are disclosed herein, including a plurality of process chambers, wherein at least one semiconductor processing operation occurs within each process chamber among the plurality of process chambers. Additionally, the apparatus and method disclosed herein include a robot mechanism for rotating each process chamber among the plurality of process chambers upon completion of an associated semiconductor processing operation. Such a robot mechanism may comprise a plurality of robots. Specifically, such a plurality of robots may include six robots configured on an associated carousel.