Abstract:
Techniques are disclosed for carrying out ferromagnetic resonance (FMR) testing on whole wafers populated with one or more buried magnetic layers. The techniques can be used to verify or troubleshoot processes for forming the buried magnetic layers, without requiring the wafer to be broken. The techniques can also be used to distinguish one magnetic layer from others in the same stack, based on a unique frequency response of that layer. One example methodology includes moving a wafer proximate to a waveguide (within 500 microns, but without shorting), energizing a DC magnetic field near the target measurement point, applying an RF input signal through the waveguide, collecting resonance spectra of the frequency response of the waveguide, and decomposing the resonance spectra into magnetic properties of the target layer. One or both of the DC magnetic field and RF input signal can be swept to generate a robust set of resonance spectra.
Abstract:
Oxide-based three-terminal resistive switching logic devices and methods of fabricating oxide-based three-terminal resistive switching logic devices are described. In a first example, a three-terminal resistive switching logic device includes an active region disposed above a substrate. The active region includes an active oxide material region disposed directly between a metal source region and a metal drain region. The device also includes a gate electrode disposed above the active oxide material region. In a second example, a three-terminal resistive switching logic device includes an active region disposed above a substrate. The active region includes a first active oxide material region spaced apart from a second oxide material region. The device also includes metal input regions disposed on either side of the first and second active oxide material regions. A metal output region is disposed between the first and second active oxide material regions.
Abstract:
Techniques are disclosed for forming a spin-transfer torque memory (STTM) element having an annular contact to reduce critical current requirements. The techniques reduce critical current requirements for a given magnetic tunnel junction (MTJ), because the annular contact reduces contact size and increases local current density, thereby reducing the current needed to switch the direction of the free magnetic layer of the MTJ. In some cases, the annular contact surrounds at least a portion of an insulator layer that prevents the passage of current. In such cases, current flows through the annular contact and around the insulator layer to increase the local current density before flowing through the free magnetic layer. The insulator layer may comprise a dielectric material, and in some cases, is a tunnel material, such as magnesium oxide (MgO). In some cases, a critical current reduction of at least 10% is achieved for a given MTJ.