Abstract:
The present disclosure is directed to systems and methods for communicating between rack mounted devices disposed in the same or different racks separated by distances of less than a meter to a few tens of meters. The system includes a CMOS first mm-wave engine that includes mm-wave transceiver circuitry, mm-wave MODEM circuitry, power distribution and control circuitry, and a mm-wave waveguide connector. The CMOS first mm-wave engine communicably couples to a CMOS second mm-wave engine that also includes mm-wave transceiver circuitry, mm-wave MODEM circuitry, power distribution and control circuitry, and a mm-wave waveguide connector. In some implementations, at least a portion of the mm-wave transceiver circuitry may be fabricated using III-V semiconductor manufacturing methods. The use of mm-wave communication techniques beneficially improves data integrity and increases achievable datarates, and reduces power costs.
Abstract:
Radio frequency (RF) data transfer between components in rack mounted systems is facilitated through the use of dielectric waveguides and millimeter Wave (mm-Wave) transceivers. A signal generator provides one or more data signals to a serializer/deserializer (SERDES) which serializes a plurality of parallel data signals to produce a single, serialized, signal containing data from each of the input signals to the SERDES. A mm-Wave die upconverts the serialized signal to a mm-Wave signal and a mm-Wave launcher launches the signal into the dielectric waveguide. At the receiving end the process is reversed such that the mm-Wave signal is first downconverted and passed through a SERDES to provide the original one or more signals to a recipient signal generator. Some or all of the components may be formed directly in the semiconductor package.
Abstract:
An embodiment includes an apparatus comprising: a semiconductor die; package molding that is molded onto and conformal with a first die surface of the semiconductor die and at least two sidewalls of the semiconductor die, the package molding including: (a)(i) a first surface contacting the semiconductor die, (a)(ii) a second surface opposite the first surface, and (a)(iii) an aperture that extends from the first surface to the second surface; and a polymer substantially filling the aperture; wherein the package molding includes a first thermal conductivity (watts per meter kelvin (W/(m·K)) and the polymer includes a second thermal conductivity that is greater than the first thermal conductivity. Other embodiments are described herein.
Abstract:
Electrical cable technology is disclosed. In one example, an electrical cable can include a transmission line conductor, a ground conductor, and a dielectric material. The dielectric material can have at least a portion with a thickness separating the transmission line conductor and the ground conductor that is variable along a length of the electrical cable. Such a non-uniform cable (e.g., a cable having components or features that vary in size and/or geometry along the length of the cable) can provide high IO density with acceptable conductive losses and cross-talk while maintaining a desired impedance.
Abstract:
Methods of forming sensor integrated package devices and structures formed thereby are described. An embodiment includes providing a substrate core, wherein a first conductive trace structure and a second conductive trace structure are disposed on the substrate core, forming a cavity between the first conductive trace structure and the second conductive trace structure, and placing a magnet on a resist material disposed on a portion of each of the first and second conductive trace structures, wherein the resist material does not extend over the cavity.
Abstract:
A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction. An interconnect comprising an interconnect substrate having a plurality of electrically isolated conductive traces extending in the x-direction on a first surface of the interconnect substrate may be attached to the at least one first microelectronic device connection structure row and the at least one second microelectronic device connection structure row, such that at least one interconnect conductive trace forms a connection between a first microelectronic device connection structure and its corresponding second microelectronic device connection structure.
Abstract:
Embodiments of the invention include a microelectronic device that includes a first ultra thin substrate formed of organic dielectric material and conductive layers, a first mold material to integrate first radio frequency (RF) components with the first substrate, and a second ultra thin substrate being coupled to the first ultra thin substrate. The second ultra thin substrate formed of organic dielectric material and conductive layers. A second mold material integrates second radio frequency (RF) components with the second substrate.
Abstract:
Systems and methods describe herein provide a solution to the technical problem of creating a wearable electronic devices. In particular, these systems and methods enable electrical and mechanical attachment of stretchable or flexible electronics to fabric. A stretchable or flexible electronic platform is bonded to fabric using a double-sided fabric adhesive, and conductive adhesive is used to join pads on the electronic platform to corresponding electrical leads on the fabric. An additional waterproofing material may be used over and beneath the electronic platform to provide a water-resistant or waterproof device This stretchable or flexible electronic platform integration process allows the platform to bend and move with the fabric while protecting the conductive connections. By using flexible and stretchable conductive leads and adhesives, the platform is more flexible and stretchable than traditional rigid electronics enclosures.
Abstract:
A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
Abstract:
A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.