FET CAPACITOR CIRCUIT ARCHITECTURES FOR TUNABLE LOAD AND INPUT MATCHING

    公开(公告)号:US20200098746A1

    公开(公告)日:2020-03-26

    申请号:US16141641

    申请日:2018-09-25

    Abstract: Integrated circuit architectures for load and input matching that include a capacitance selectable between a plurality of discrete levels, which are associated with a number of field effect transistors (FET) capacitor structures that are in an on-state. The capacitance comprises a metal-oxide-semiconductor (MOS) capacitance associated with each of the FET capacitor structures, and may be selectable through application of a bias voltage applied between a first circuit node and a second circuit node. Gate electrodes of the FET capacitor structures may be coupled in electrical parallel to the first circuit node, while source/drains of the FET capacitor structures are coupled in electrical parallel to the second circuit node. Where the FET capacitor structures have different gate-source threshold voltages, the number of FET capacitor structures in the on-state may be varied according to the bias voltage, and the capacitance correspondingly tuned to a desired value. The FET capacitor structures may be operable in depletion mode and/or enhancement mode.

    III-N TRANSISTORS WITH POLARIZATION MODULATION

    公开(公告)号:US20200083360A1

    公开(公告)日:2020-03-12

    申请号:US16126884

    申请日:2018-09-10

    Abstract: III-N transistor structure with modulation in the thickness of a III-N material that induces a 2D carrier gas within another III-N material. A thickness of the III-N material within a first distance between a gate terminal and second transistor terminal may be lower than a thickness of the III-N material within a second distance between the gate terminal and a third transistor terminal. Carrier density within the 2D carrier gas, as driven by the thickness modulation, may be lower within a distance between a gate electrode and a second terminal of the transistor. With lower carrier density, more voltage may be dropped over a given distance. Lateral dimensions of a transistor capable of sustaining a given gate-drain voltage, for example, may be reduced.

    Pillar resistor structures for integrated circuitry

    公开(公告)号:US10243034B2

    公开(公告)日:2019-03-26

    申请号:US15667333

    申请日:2017-08-02

    Abstract: Integrated circuit structures including a pillar resistor disposed over a surface of a substrate, and fabrication techniques to form such a resistor in conjunction with fabrication of a transistor over the substrate. Following embodiments herein, a small resistor footprint may be achieved by orienting the resistive length orthogonally to the substrate surface. In embodiments, the vertical resistor pillar is disposed over a first end of a conductive trace, a first resistor contact is further disposed on the pillar, and a second resistor contact is disposed over a second end of a conductive trace to render the resistor footprint substantially independent of the resistance value. Formation of a resistor pillar may be integrated with a replacement gate transistor process by concurrently forming the resistor pillar and sacrificial gate out of a same material, such as polysilicon. Pillar resistor contacts may also be concurrently formed with one or more transistor contacts.

    Schottky diode structures and integration with III-V transistors

    公开(公告)号:US11521964B2

    公开(公告)日:2022-12-06

    申请号:US16024705

    申请日:2018-06-29

    Abstract: Embodiments herein describe techniques, systems, and method for a semiconductor device. Embodiments herein may present a semiconductor device having a channel area including a channel III-V material, and a source area including a first portion and a second portion of the source area. The first portion of the source area includes a first III-V material, and the second portion of the source area includes a second III-V material. The channel III-V material, the first III-V material and the second III-V material may have a same lattice constant. Moreover, the first III-V material has a first bandgap, and the second III-V material has a second bandgap, the channel III-V material has a channel III-V material bandgap, where the channel material bandgap, the second bandgap, and the first bandgap form a monotonic sequence of bandgaps. Other embodiments may be described and/or claimed.

    FET capacitor circuit architectures for tunable load and input matching

    公开(公告)号:US11380679B2

    公开(公告)日:2022-07-05

    申请号:US16141641

    申请日:2018-09-25

    Abstract: Integrated circuit architectures for load and input matching that include a capacitance selectable between a plurality of discrete levels, which are associated with a number of field effect transistors (FET) capacitor structures that are in an on-state. The capacitance comprises a metal-oxide-semiconductor (MOS) capacitance associated with each of the FET capacitor structures, and may be selectable through application of a bias voltage applied between a first circuit node and a second circuit node. Gate electrodes of the FET capacitor structures may be coupled in electrical parallel to the first circuit node, while source/drains of the FET capacitor structures are coupled in electrical parallel to the second circuit node. Where the FET capacitor structures have different gate-source threshold voltages, the number of FET capacitor structures in the on-state may be varied according to the bias voltage, and the capacitance correspondingly tuned to a desired value. The FET capacitor structures may be operable in depletion mode and/or enhancement mode.

Patent Agency Ranking