Calibrating tip-enhanced Raman microscopes

    公开(公告)号:US10605826B2

    公开(公告)日:2020-03-31

    申请号:US16010500

    申请日:2018-06-17

    Abstract: A calibration apparatus for a tip-enhanced Raman microscope includes a substrate; a two-dimensional Raman scatterer that is mounted on an upper surface of the substrate; and a well-defined topographic structure that is formed at the upper surface of the substrate. The topographic structure may include convex geometric shapes such as triangles and squares arranged in one or more periodic lattices. Calibration is via adjusting a focal length of a laser beam until a signal from a spectrometer repeatedly exhibits a stepped response when a focal point of the laser beam traverses an edge of a two-dimensional Raman scatterer, then adjusting the relative lateral positions of a scanning probe microscope probe tip and the focal point until the signal from the spectrometer and a signal from the scanning probe microscope repeatedly change within an acceptable time delay while the focal point and the probe tip traverse edges of the topographic structure.

    CALIBRATING TIP-ENHANCED RAMAN MICROSCOPES
    14.
    发明申请

    公开(公告)号:US20190383854A1

    公开(公告)日:2019-12-19

    申请号:US16010500

    申请日:2018-06-17

    Abstract: A calibration apparatus for a tip-enhanced Raman microscope includes a substrate; a two-dimensional Raman scatterer that is mounted on an upper surface of the substrate; and a well-defined topographic structure that is formed at the upper surface of the substrate. The topographic structure may include convex geometric shapes such as triangles and squares arranged in one or more periodic lattices. Calibration is via adjusting a focal length of a laser beam until a signal from a spectrometer repeatedly exhibits a stepped response when a focal point of the laser beam traverses an edge of a two-dimensional Raman scatterer, then adjusting the relative lateral positions of a scanning probe microscope probe tip and the focal point until the signal from the spectrometer and a signal from the scanning probe microscope repeatedly change within an acceptable time delay while the focal point and the probe tip traverse edges of the topographic structure.

    DETERMINING INTERFACIAL TENSION FOR FLUID-FLUID-SOLID ENVIRONMENTS

    公开(公告)号:US20220011212A1

    公开(公告)日:2022-01-13

    申请号:US16923180

    申请日:2020-07-08

    Abstract: Aspects of the invention include determining, by a first AFM tip, a first snap-off force of a solid surface immersed in a first fluid, determining, by a second AFM tip, a second snap-off force, determining, by a third AFM tip, a third snap-off force, determining, by the first AFM tip, a fourth snap-off force of a droplet of the first fluid immersed in the second fluid on the solid surface, determining, by the second AFM tip, a fifth snap-off force, determining, by the third AFM tip, a sixth snap-off force, determining a first capillary force for first AFM tip and first droplet based on first snap-off force and fourth snap-off force, determining a second capillary force for second AFM tip and first droplet and a third capillary force for third AFM tip and first droplet, and determining interfacial tension between first fluid and second fluid based on the capillary forces.

Patent Agency Ranking