Abstract:
A process for overcoming extreme topographies by first planarizing a cavity in a semiconductor substrate in order to create a planar surface for subsequent lithography processing. As a result of the planarizing process for extreme topographies, subsequent lithography processing is enabled including the deposition of features in close proximity to extreme topographic surfaces (e.g., deep cavities or channels) and, including the deposition of features within a cavity. In a first embodiment, the process for planarizing a cavity in a semiconductor substrate includes the application of dry film resists having high chemical resistance. In a second embodiment, the process for planarizing a cavity includes the filling of cavity using materials such as polymers, spin on glasses, and metallurgy.
Abstract:
A mobile electronic device such as a smartphone is used in conjunction with a deep learning system to detect and respond to personal danger. The deep learning system monitors current information (such as location, audio, biometrics, etc.) from the smartphone and generates a risk score by comparing the information to a routine profile for the user. If the risk score exceeds a predetermined threshold, an alert is sent to the smartphone which presents an alert screen to the user. The alert screen allows the user to cancel the alert (and notify the deep learning system) or confirm the alert (and immediately transmit an emergency message). Multiple emergency contacts can be designated, e.g., one for a low-level risk, another for an intermediate-level risk, and another for a high-level risk, and the emergency message can be sent to a selected contact depending upon the severity of the risk score.
Abstract:
According to an aspect of the present principles, methods are provided for fabricating an integrated structure. A method includes forming a very large scale integration (VLSI) structure including a semiconductor layer at a top of the VLSI structure. The method further includes mounting the VLSI structure to a support structure. The method additionally includes removing at least a portion of the semiconductor layer from the VLSI structure. The method also includes attaching an upper layer to the top of the VLSI structure. The upper layer is primarily composed of a material that has at least one of a higher resistivity or a higher transparency than the semiconductor layer. The upper layer includes at least one hole for at least one of a photonic device or an electronic device. The method further includes releasing said VLSI structure from the support structure.
Abstract:
Resolving a query received from a first node in a network includes accepting, by a second node in the network, ownership of the query from the first node, receiving, at the second node, an identification of a third node in the network, wherein the identification is received from a user of the second node and the user of the second node believes that a user of the third node has information necessary to resolve at least part of the query, and transferring, by the second node, ownership of the at least part of the query to the third node, wherein the accepting, the receiving, and the transferring dynamically generates a data structure that traces a propagation of the query, and the data structure is accessible to an origin of the query.
Abstract:
Resolving a query received from a first node in a network includes accepting, by a second node in the network, ownership of the query from the first node, receiving, at the second node, an identification of a third node in the network, wherein the identification is received from a user of the second node and the user of the second node believes that a user of the third node has information necessary to resolve at least part of the query, and transferring, by the second node, ownership of the at least part of the query to the third node, wherein the accepting, the receiving, and the transferring dynamically generates a data structure that traces a propagation of the query, and the data structure is accessible to an origin of the query.
Abstract:
A method for resolving a query received from a first node in a network includes accepting, by a second node in the network, ownership of the query from the first node, receiving, at the second node, an identification of a third node in the network, wherein the identification is received from a user of the second node and the user of the second node believes that a user of the third node has information necessary to resolve at least part of the query, and transferring, by the second node, ownership of the at least part of the query to the third node, wherein the accepting, the receiving, and the transferring dynamically generates a data structure that traces a propagation of the query, and the data structure is accessible to an origin of the query.
Abstract:
According to an aspect of the present principles, methods are provided for fabricating an integrated structure. A method includes forming a very large scale integration (VLSI) structure including a semiconductor layer at a top of the VLSI structure. The method further includes mounting the VLSI structure to a support structure. The method additionally includes removing at least a portion of the semiconductor layer from the VLSI structure. The method also includes attaching an upper layer to the top of the VLSI structure. The upper layer is primarily composed of a material that has at least one of a higher resistivity or a higher transparency than the semiconductor layer. The upper layer includes at least one hole for at least one of a photonic device or an electronic device. The method further includes releasing said VLSI structure from the support structure.
Abstract:
Resolving a query received from a first node in a network includes accepting, by a second node in the network, ownership of the query from the first node, receiving, at the second node, an identification of a third node in the network, wherein the identification is received from a user of the second node and the user of the second node believes that a user of the third node has information necessary to resolve at least part of the query, and transferring, by the second node, ownership of the at least part of the query to the third node, wherein the accepting, the receiving, and the transferring dynamically generates a data structure that traces a propagation of the query, and the data structure is accessible to an origin of the query.
Abstract:
A process for overcoming extreme topographies by first planarizing a cavity in a semiconductor substrate in order to create a planar surface for subsequent lithography processing. As a result of the planarizing process for extreme topographies, subsequent lithography processing is enabled including the deposition of features in close proximity to extreme topographic surfaces (e.g., deep cavities or channels) and, including the deposition of features within a cavity. In a first embodiment, the process for planarizing a cavity in a semiconductor substrate includes the application of dry film resists having high chemical resistance. In a second embodiment, the process for planarizing a cavity includes the filling of cavity using materials such as polymers, spin on glasses, and metallurgy.
Abstract:
A mobile electronic device such as a smartphone is used in conjunction with a deep learning system to detect and respond to personal danger. The deep learning system monitors current information (such as location, audio, biometrics, etc.) from the smartphone and generates a risk score by comparing the information to a routine profile for the user. If the risk score exceeds a predetermined threshold, an alert is sent to the smartphone which presents an alert screen to the user. The alert screen allows the user to cancel the alert (and notify the deep learning system) or confirm the alert (and immediately transmit an emergency message). Multiple emergency contacts can be designated, e.g., one for a low-level risk, another for an intermediate-level risk, and another for a high-level risk, and the emergency message can be sent to a selected contact depending upon the severity of the risk score.