摘要:
Conjugates between a minor groove binding molecule, such as the trimer of 1,2-dihydro-(3H)-pyrrolo[3,2-e]indole-7-carboxylate (CDPI3), and an oligonucleotide form unusually stable hybrids with complementary target sequences, in which the tethered CDPI3 group resides in the minor groove of the duplex. These conjugates can be used as probes and primers. Due to their unusually high binding affinity, conjugates as short as 8-mers can be used as amplification primers with high specificity and efficiency. MGB conjugation also increases the discriminatory power of short oligonucleotides, providing enhanced detection of nucleotide sequence mismatches by short oligonucleotides. The MGB-conjugated probes and primers described herein facilitate various analytic and diagnostic procedures, such as amplification reactions, PCR, detection of single-nucleotide polymorphisms, gene hunting, differential display, fluorescence energy transfer, hydrolyzable probe assays and others; by allowing the use of shorter oligonucleotides, which have higher specificity and better discriminatory power.
摘要:
Conjugates between a minor groove binding molecule, such as the trimer of 1,2-dihydro-(3H)-pyrrolo[3,2-e]indole-7-carboxylate (CDPI3), and an oligonucleotide form unusually stable hybrids with complementary target sequences, in which the tethered CDPI3 group resides in the minor groove of the duplex. These conjugates can be used as probes and primers. Due to their unusually high binding affinity, conjugates as short as 8-mers can be used as amplification primers with high specificity and efficiency. MGB conjugation also increases the discriminatory power of short oligonucleotides, providing enhanced detection of nucleotide sequence mismatches by short oligonucleotides. The MGB-conjugated probes and primers described herein facilitate various analytic and diagnostic procedures, such as amplification reactions, PCR, detection of single-nucleotide polymorphisms, gene hunting, differential display, fluorescence energy transfer, hydrolyzable probe assays and others; by allowing the use of shorter oligonucleotides, which have higher specificity and better discriminatory power.
摘要:
Conjugates between a minor groove binding molecule, such as the trimer of 1,2-dihydro-(3H)-pyrrolo[3,2-e]indole-7-carboxylate (CDPI3), and an oligonucleotide form unusually stable hybrids with complementary target sequences, in which the tethered CDPI3 group resides in the minor groove of the duplex. These conjugates can be used as probes and primers. Due to their unusually high binding affinity, conjugates as short as 8-mers can be used as amplification primers with high specificity and efficiency. MGB conjugation also increases the discriminatory power of short oligonucleotides, providing enhanced detection of nucleotide sequence mismatches by short oligonucleotides. The MGB-conjugated probes and primers described herein facilitate various analytic and diagnostic procedures, such as amplification reactions, PCR, detection of single-nucleotide polymorphisms, gene hunting, differential display, fluorescence energy transfer, hydrolyzable probe assays and others; by allowing the use of shorter oligonucleotides, which have higher specificity and better discriminatory power.
摘要:
Diaziridinyl-aryl and bis-[di(chloroethyl)amino]-aryl oligonucleotide conjugates have a sequence that is complementary in the triplex forming sense to a target sequence in duplex nucleic acid. The diaziridinyl-aryl and bis-[di(chloroethyl)amino]-aryl oligonucleotide conjugates effectively cross-link with both strands of the targeted duplex nucleic acid.
摘要:
Oligonucleotide probes/conjugates are provided along with method for their use in assays to monitor amplification wherein the signal produced does not rely on 5′ nuclease digestion.
摘要:
Oligonucleotide probes/conjugates are provided along with method for their use in assays to monitor amplification wherein the signal produced does not rely on 5′ nuclease digestion.
摘要:
Oligonucleotides having approximately 8 to 18 nucleotide units and a 3'-tail which includes asteroid structure attached to the 3'-end through the A ring of the steroid skeleton and which form substantially stable duplexes at physiological temperature, have selective cytotoxic activity against certain tumor cell lines.
摘要:
3-alkynyl inosine analogs and their uses as universal bases are provided. The inosine analogues can be incorporated into nucleic acid primers and probes. They do not significantly destabilize nucleic acid duplexes. As a result, the novel nucleic acid primers and probes incorporating the inosine analogues can be used in a variety of methods. The analogs function unexpectedly well as universal bases. Not only do they stabilize duplexes substantially more than hypoxanthine opposite A, C, T, and G but they are also recognized in primers by polymerases, allowing efficient amplification.
摘要:
3-alkynyl inosine analogs and their uses as universal bases are provided. The inosine analogues can be incorporated into nucleic acid primers and probes. They do not significantly destabilize nucleic acid duplexes. As a result, the novel nucleic acid primers and probes incorporating the inosine analogues can be used in a variety of methods. The analogs function unexpectedly well as universal bases. Not only do they stabilize duplexes substantially more than hypoxanthine opposite A, C, T, and G but they are also recognized in primers by polymerases, allowing efficient amplification.
摘要:
Minor groove binder phosphoramidites having the formula M-L-PA, wherein M is a minor groove binder comprising a protected heteroaromatic amine, L is a linker, and PA is a phosphoramidite group, have been synthesized. Preferred methods of synthesis include synthesizing a minor groove binder intermediate containing a transiently protected hydroxyl group, protecting heteroaromatic amines of the corresponding minor groove binder intermediate as carbamate intermediates, reacting the carbamate intermediate to remove the transient protecting group to yield carbamate-protected minor groove binder agent as an intermediate with a free hydroxyl group, and converting the intermediate with a free hydroxyl group to the desired minor groove binder phosphoramidite. These minor groove binder phosphoramidites are useful in the preparation of oligonucleotide conjugates, particularly those for use as probes and primers. In preferred methods, an oligonucleotide sequence is synthesized using nucleoside phosphoramidites and the minor groove binder phosphoramidite is incorporated into the oligonucleotide sequence to form a protected oligonucleotide-minor groove binder conjugate. Then, deprotection produces the oligonucleotide-minor groove binder.