Abstract:
Integrated circuit structures including a pillar resistor disposed over a surface of a substrate, and fabrication techniques to form such a resistor in conjunction with fabrication of a transistor over the substrate. Following embodiments herein, a small resistor footprint may be achieved by orienting the resistive length orthogonally to the substrate surface. In embodiments, the vertical resistor pillar is disposed over a first end of a conductive trace, a first resistor contact is further disposed on the pillar, and a second resistor contact is disposed over a second end of a conductive trace to render the resistor footprint substantially independent of the resistance value. Formation of a resistor pillar may be integrated with a replacement gate transistor process by concurrently forming the resistor pillar and sacrificial gate out of a same material, such as polysilicon. Pillar resistor contacts may also be concurrently formed with one or more transistor contacts.
Abstract:
IC device structures including a lateral compound resistor disposed over a surface of a substrate, and fabrication techniques to form such a resistor in conjunction with fabrication of a transistor. Rather than being stacked vertically, a compound resistive trace may include a plurality of resistive materials arranged laterally over a substrate. Along a resistive trace length, a first resistive material is in contact with a sidewall of a second resistive material. A portion of a first resistive material along a centerline of the resistive trace may be replaced with a second resistive material so that the second resistive material is embedded within the first resistive material.
Abstract:
An embodiment includes an apparatus comprising: a non-planar fin having first, second, and third portions each having major and minor axes and each being monolithic with each other; wherein (a) the major axes of the first, second, and third portions are parallel with each other, (b) the major axes of the first and second portions are non-collinear with each other, (c) each of the first, second, and third portions include a node of a transistor selected from the group comprising source, drain, and channel, (e) the first, second, and third portions comprise at least one finFET. Other embodiments are described herein.
Abstract:
A microelectronic transistor may be fabricated having an airgap spacer formed as a gate sidewall spacer, such that the airgap spacer is positioned between a gate electrode and a source contact and/or a drain contact of the microelectronic transistor. As the dielectric constant of gaseous substances is significantly lower than that of a solid or a semi-solid dielectric material, the airgap spacer may result in minimal capacitive coupling between the gate electrode and the source contact and/or the drain contact, which may reduce circuit delay of the microelectronic transistor.
Abstract:
Embedded fuse structures and fabrication techniques. An embedded fuse may include a non-planar conductive line having two high-z portions extending to a greater z-height than a low-z portion of reduced current carrying capability disposed there between. A dielectric disposed over the low-z portion has a top surface planar with the high-z line portions to which fuse contacts may be landed. Fabrication of an embedded fuse may include undercutting a region of a first dielectric material disposed over a substrate. The undercut region is lined with a second dielectric material. A pair of electrically joined fuse ends are formed by backfilling the lined undercut region with a conductive material. In advantageous embodiments, fuse fabrication is compatible with high-K, metal gate transistor and precision polysilicon resistor fabrication flows.
Abstract:
Vertical non-planar semiconductor devices for system-on-chip (SoC) applications and methods of fabricating vertical non-planar semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate, the semiconductor fin having a recessed portion and an uppermost portion. A source region is disposed in the recessed portion of the semiconductor fin. A drain region is disposed in the uppermost portion of the semiconductor fin. A gate electrode is disposed over the uppermost portion of the semiconductor fin, between the source and drain regions.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for overcurrent fuses in integrated circuit (IC) devices. In one embodiment, a device layer of a die may include a first line structure with a recessed portion between opposite end portions and two second line structures positioned on opposite sides of the first line structure. An isolation material may be disposed in the gaps between the line structures and in a first recess defined by the recessed portion. The isolation material may have a recessed portion that defines a second recess in the first recess, and a fuse structure may be disposed in the second recess. Other embodiments may be described and/or claimed.
Abstract:
An apparatus includes a first device with a metal gate and a drain well that experiences a series resistance that drops a drain contact voltage from 10 V to 4-6 V at a junction between the drain well and a channel under the gate. The apparatus includes an interlayer dielectric layer (ILD0) disposed above and on the drain well and a salicide drain contact in the drain well. The apparatus also includes a subsequent device that is located in a region different from the first device that operates at a voltage lower than the first device.
Abstract:
Techniques and circuitry are disclosed for implementing non-volatile storage that exploit bias temperature instability (BTI) effects of high-k/metal-gate n-type or p-type metal oxide semiconductor (NMOS or PMOS) transistors. A programmed bitcell of, for example, a memory or programmable logic circuit exhibits a threshold voltage shift resulting from an applied programming bias used to program bitcells. In some cases, applying a first programming bias causes the device to have a first state, and applying a second programming bias causes the device to have a second state that is different than the first state. Programmed bitcells can be erased by applying an opposite polarity stress, and re-programmed through multiple cycles. The bitcell configuration can be used in conjunction with column/row select circuitry and/or readout circuitry, in accordance with some embodiments.
Abstract:
An integrated circuit structure comprises a base and a plurality of metal levels over the base. A first metal level includes a first dielectric material. The first metal level further includes a first plurality of interconnect lines in the first dielectric material, wherein the first plurality of interconnect lines in the first metal level have variable widths from relatively narrow to relatively wide, and wherein the first plurality of interconnect lines have variable heights based on the variable widths, such that a relatively wide one of the first plurality of interconnect lines has a taller height from the substrate than a relatively narrow one of the first plurality of interconnect lines, and a shorter distance to a top of the first metal level.