Abstract:
A processor may determine the actual residency time of a non-core domain residing in a power saving state and based on the actual residency time the processor may determine an optimal power saving state (P-state) for the processor. In response to the non-core domain entering a power saving state, an interrupt generator (IG) may generate a first interrupt and the device drivers or an operating system may use the first interrupt to start a timer (first value). In response to the non-core domain exiting the power saving state, the IG may generate a second interrupt and the device drivers or an operating system may use the second interrupt to stop the timer (final value). The power management unit may use the final and the first value to determine the actual residency time.
Abstract:
In one embodiment, the present invention includes a processor having multiple domains including at least a core domain and a non-core domain that is transparent to an operating system (OS). The non-core domain can be controlled by a driver. In turn, the processor further includes a memory interconnect to interconnect the core domain and the non-core domain to a memory coupled to the processor. Still further, a power controller, which may be within the processor, can control a frequency of the memory interconnect based on memory boundedness of a workload being executed on the non-core domain. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a method for determining that a non-core domain of a multi-domain processor is not operating at a frequency requested by the non-core domain, sending a request from the non-core domain to a power controller to reduce a frequency of a core domain of the multi-domain processor, and responsive to the request, reducing the core domain frequency. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor having multiple domains including at least a core domain and a non-core domain that is transparent to an operating system (OS). The non-core domain can be controlled by a driver. In turn, the processor further includes a memory interconnect to interconnect the core domain and the non-core domain to a memory coupled to the processor. Still further, a power controller, which may be within the processor, can control a frequency of the memory interconnect based on memory boundedness of a workload being executed on the non-core domain. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor having multiple domains including at least a core domain and a non-core domain that is transparent to an operating system (OS). The non-core domain can be controlled by a driver. In turn, the processor further includes a memory interconnect to interconnect the core domain and the non-core domain to a memory coupled to the processor. Still further, a power controller, which may be within the processor, can control a frequency of the memory interconnect based on memory boundedness of a workload being executed on the non-core domain. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a core to execute instructions, an agent to perform an operation independently of the core, a fabric to couple the core and agent and including a plurality of domains and a logic to receive isochronous parameter information from the agent and environmental information of a platform and to generate first and second values, and a power controller to control a frequency of the domains based at least in part on the first and second values. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor having multiple domains including at least a core domain and a non-core domain that is transparent to an operating system (OS). The non-core domain can be controlled by a driver. In turn, the processor further includes a memory interconnect to interconnect the core domain and the non-core domain to a memory coupled to the processor. Still further, a power controller, which may be within the processor, can control a frequency of the memory interconnect based on memory boundedness of a workload being executed on the non-core domain. Other embodiments are described and claimed.