Abstract:
A system comprises a teleoperational assembly including a teleoperational manipulator coupled to a plurality of instruments in a surgical environment. The system also comprises a processing unit including one or more processors. The processing unit is configured to display a first synthetic rendering of the plurality of instruments, recognize a triggering event, and change from displaying the first synthetic rendering to displaying a second synthetic rendering of the plurality of instruments in response to recognition of the triggering event.
Abstract:
To perform a tool exchange in a medical robotic system, tool is retracted back into an entry guide from a deployed position and pose so that an assistant in the operating room may replace it with a different tool. While the tool is being retracted back towards the entry guide by user action, its configuration is changed to an entry pose while avoiding collisions with other objects so that it may fit in the entry guide. After the tool exchange is completed, a new tool is inserted in the entry guide and extended out of the guide by user action to the original position of the old tool prior to its retraction into the entry guide while the tool's controller assists the user by reconfiguring the new tool so as to resemble the original deployed pose of the old tool prior to its retraction into the entry guide.
Abstract:
A robotic system has a plurality of user selectable operating modes. To select one of the operating modes, a user performs a distinguishing action which uniquely identifies a desired operating mode among the plurality of user selectable operating modes. A method implemented by a processor in the robotic system identifies the distinguishing action and places the robotic system in the user selected operating mode.
Abstract:
A system comprises a teleoperational assembly including an operator control system and a first teleoperational manipulator configured for operation by an operator control device of the operator control system. The first teleoperational manipulator is configured to control the operation of a first medical instrument in a surgical environment. The system also comprises a processing unit including one or more processors. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu proximate to an image of the first medical instrument in the image of the field of view. The menu includes at least one icon representing a function for the first medical instrument.
Abstract:
A method comprises displaying an image of a field of view of a surgical environment. A first medical instrument in the field of view may be coupled to a first manipulator in a teleoperational assembly. The method may comprise displaying a menu proximate to an image of the first medical instrument in the image of the field of view. The menu may include a plurality of icons wherein each icon is associated with a function for the first medical instrument. The method may also comprise identifying a selected icon from the plurality of icons based upon a movement of an operator control device of a teleoperational operator control system.
Abstract:
A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations are displayed along with indications of range of motion limitations on a display screen from the perspective of a specified viewing point.
Abstract:
A system comprises a teleoperational assembly including an operator control system and a first teleoperational manipulator configured for operation by an operator control device of the operator control system. The first teleoperational manipulator is configured to control the operation of a first medical instrument in a surgical environment. The system also comprises a processing unit including one or more processors. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu proximate to an image of the first medical instrument in the image of the field of view. The menu includes at least one icon representing a function for the first medical instrument.
Abstract:
A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations are displayed along with indications of range of motion limitations on a display screen from the perspective of a specified viewing point.
Abstract:
A robotic system has a plurality of user selectable operating modes. To select one of the operating modes, a user performs a distinguishing action which uniquely identifies a desired operating mode among the plurality of user selectable operating modes. A method implemented by a processor in the robotic system identifies the distinguishing action and places the robotic system in the user selected operating mode.
Abstract:
A teleoperational system in a surgical environment is provided. The system comprises a teleoperational assembly including a first teleoperational arm and a visual projection device coupled to the teleoperational assembly. The system further comprises a sensor and one or more processors. The one or more processors are configured to: receive first sensor information from the sensor; determine a first visual aid based upon the first sensor information; operate the visual projection device to project the first visual aid into the surgical environment; and operate the visual projection device to change the first visual aid to a second visual aid based on second sensor information received from the sensor.