摘要:
In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.
摘要:
The present invention pertains to therapeutic compositions that comprise: (1) a nanovector, (2) an active agent; and (3) a targeting agent, wherein the active agent and the targeting agent are non-covalently associated with the nanovector. The present invention also pertains to methods of treating various conditions in a subject by utilizing the above-described therapeutic compositions. Methods of making the therapeutic compositions are also a subject matter the present invention.
摘要:
In some embodiments, the present invention relates to new processes to simultaneously shorten and functionalize raw or purified carbon nanotubes to improve their dispersity and processibility, and the short functionalized nanotubes that may be made by the processes. This present invention also relates to new compositions of matter using short functionalized carbon nanotubes with thermoset, thermoplastic polymers, high temperature polymers, and other materials; the processes for making such composite materials; and the products of said processes.
摘要:
Re-programmable antifuses and structures utilizing re-programmable antifuses are presented. Such structures include a configurable interconnect circuit having at least one re-programmable antifuse, wherein the at least one re-programmable antifuse is configured to be programmed to conduct by applying a first voltage across it and is configured to be re-programmed not to conduct by applying second voltage across it, wherein the second voltage is higher than the first voltage. Other embodiments of antifuses include an initializing step prior to programming.
摘要:
Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
摘要:
The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
摘要:
Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
摘要:
The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
摘要:
This invention is generally related to a method of making a molecule-surface interface comprising at least one surface comprising at least one material and at least one organic group wherein the organic group is adjoined to the surface and the method comprises contacting at least one organic group precursor with at least one surface wherein the organic group precursor is capable of reacting with the surface in a manner sufficient to adjoin the organic group and the surface.
摘要:
The present invention provides methods by which carbon nanotubes can be functionalized under solvent-free conditions. As extremely large quantities are typically required to dissolve or disperse carbon nanotubes, solvent elimination the processes more favorable for scale-up. Such processes are also amenable to a wide variety of chemical reactions are functionalizing agents.