摘要:
A method for forming a bottom spin valve sensor having a synthetic antiferromagnetic pinned (SyAP) layer, antiferromagnetically coupled to a pinning layer, in which one of the layers of the SyAP is formed as a three layer lamination that contains a specularly reflecting oxide layer of FeTaO. The sensor formed according to this method has an extremely high GMR ratio and exhibits good pinning strength.
摘要:
Patterned, longitudinally and transversely antiferromagnetically exchange biased GMR sensors are provided which have narrow effective trackwidths and reduced side reading. The exchange biasing significantly reduces signals produced by the portion of the ferromagnetic free layer that is underneath the conducting leads while still providing a strong pinning field to maintain sensor stability. In the case of the transversely biased sensor, the magnetization of the free and biasing layers in the same direction as the pinned layer simplifies the fabrication process and permits the formation of thinner leads by eliminating the necessity for current shunting.
摘要:
A method for forming a top spin-valve SyAP GMR read sensor having a novel conductive lead overlay configuration and the sensor so formed. The lead overlay electrically contacts the sensor at a position within the SyAP pinned layer, thus simultaneously assuring improved electrical contact and destroying the GMR properties of the sensor at the junction to improve the definition of the sensor track width.
摘要:
Nano-oxide based current-perpendicular-to-plane (CPP) magnetoresistive (MR) sensor stacks are provided, together with methods for forming such stacks. Such stacks have increased resistance and enhanced magnetoresistive properties relative to CPP stacks made entirely of metallic layers. Said enhanced properties are provided by the insertion of magnetic nano-oxide layers between ferromagnetic layers and non-magnetic spacer layers, whereby said nano-oxide layers increase resistance and exhibit spin filtering properties. CPP sensor stacks of various types are provided, all having nano-oxide layers formed therein, including the spin-valve type and the synthetic antiferromagnetic pinned layer spin-valve type. Said stacks can also be formed upon each other to provide laminated stacks of different types.
摘要:
Reduction of the free layer thickness in GMR devices is desirable in order to meet higher signal requirements, besides improving the GMR ratio itself. However, thinning of the free layer reduces the GMR ratio and leads to poor thermal stability. This problem has been overcome by making AP2 from an inverse GMR material and by changing the free layer from a single uniform layer to a ferromagnetic layer AFM (antiferromagnetically) coupled to a layer of inverse GMR material. Examples of alloys that may be used for the inverse GMR materials include FeCr, NiFeCr, NiCr, CoCr, CoFeCr, and CoFeV. Additionally, the ruthenium layer normally used to effect antiferromagnetic coupling can be replaced by a layer of chromium. A process to manufacture the structure is also described.
摘要:
Nano-oxide based current-perpendicular-to-plane (CPP) magnetoresistive (MR) sensor stacks are provided, together with methods for forming such stacks. Such stacks have increased resistance and enhanced magnetoresistive properties relative to CPP stacks made entirely of metallic layers. Said enhanced properties are provided by the insertion of magnetic nano-oxide layers between ferromagnetic layers and non-magnetic spacer layers, whereby said nano-oxide layers increase resistance and exhibit spin filtering properties. CPP sensor stacks of various types are provided, all having nano-oxide layers formed therein, including the spin-valve type and the synthetic antiferromagnetic pinned layer spin-valve type. Said stacks can also be formed upon each other to provide laminated stacks of different types.
摘要:
In current synthetically pinned CPP SV designs, AP2 always makes a negative contribution to the device's GMR since its magnetization direction must be anti-parallel to the pinned layer (AP1). This effect has been reduced by replacing the conventional single layer AP2, that forms part of the synthetic pinned layer, with a multilayer structure into which has been inserted at least one layer of a material such as tantalum that serves to depolarize the spin of electrons that traverse its interfaces. The result is a reduction of said negative contribution by AP2, leading to a significant increase in the GMR ratio.
摘要:
A method for forming top and bottom spin valve sensors and the sensors so formed, the sensors having a strongly coupled SyAP pinned layer and an ultra-thin antiferromagnetic pinning layer. The two strongly coupled ferromagnetic layers comprising the SyAP pinned layer in the top valve configuration are separated by a Ru spacer layer approximately 3 angstroms thick, while the two layers in the bottom spin valve configuration are separated by a Rh spacer layer approximately 5 angstroms thick. This allows the use of an ultra thin MnPt antiferromagnetic pinning layer of thickness between approximately 80 and approximately 150 angstroms. The sensor structure produced thereby is suitable for high density applications.
摘要:
It has been found that the insertion of a copper laminate within CoFe, or a CoFe/NiFe composite, leads to higher values of CPP GMR and DRA. However, this type of structure exhibits very negative magnetostriction, in the range of high −10−6 to −10−5. This problem has been overcome by giving the copper laminates an oxygen exposure treatment When this is done, the free layer is found to have a very low positive magnetostriction constant. Additionally, the value of the magnetostriction constant can be adjusted by varying the thickness of the free layer and/or the position and number of the oxygen treated copper laminates.
摘要:
Single write poles tend to large shape anisotropy which results in a very large remnant field when not actually writing. This has now been eliminated by giving the write pole the form of a three layer laminate in which two ferromagnetic layers are separated by a non-magnetic or antiferromagnetic coupling layer. Strong magnetostatic coupling between the outer layers causes their magnetization directions to automatically be antiparallel to one another, unless overcome by the more powerful write field, leaving the structure with a low net magnetic moment. The thickness of the middle layer must be carefully controlled.