摘要:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
摘要:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
摘要:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
摘要:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
摘要:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
摘要:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
摘要:
Improved methods and articles providing conformal coatings for a variety of devices including electronic, semiconductor, and liquid crystal display devices. Peptide formulations which bind to nanoparticles and substrates, including substrates with trenches and vias, to provide conformal coverage as a seed layer. The seed layer can be further enhanced with use of metallic films deposited on the seed layer. Seed layers can be characterized by AFM measurements and improved seed layers provide for better enhancement layers including lower resistivity in the enhancement layer. Peptides can be identified by phage display.
摘要:
Improved methods and articles providing conformal coatings for a variety of devices including electronic, semiconductor, and liquid crystal display devices. Peptide formulations which bind to nanoparticles and substrates, including substrates with trenches and vias, to provide conformal coverage as a seed layer. The seed layer can be further enhanced with use of metallic films deposited on the seed layer. Seed layers can be characterized by AFM measurements and improved seed layers provide for better enhancement layers including lower resistivity in the enhancement layer. Peptides can be identified by phage display.
摘要:
The present disclosure relates to modifications to nanostructure based transparent conductors to achieve increased haze/light-scattering with different and tunable degrees of scattering, different materials, and different microstructures and nanostructures.
摘要:
The present disclosure relates to modifications to nanostructure based transparent conductors to achieve increased haze/light-scattering with different and tunable degrees of scattering, different materials, and different microstructures and nanostructures.