摘要:
A plasma etch method for etching a dielectric layer and an etch stop layer to reach a metal silicide layer formed thereunder employs for etching the etch stop layer an etchant gas composition comprising a fluorine containing gas and a nitrogen containing gas, preferably with a carrier gas such as argon or helium, but without an oxygen containing gas or a carbon and oxygen containing gas. The plasma etch method is selective for the etch stop layer with respect to the metal silicide layer, thus maintaining the physical and electrical integrity of the metal silicide layer.
摘要:
A semiconductor structure includes a substrate, a gate stack on the substrate, a source/drain region adjacent the gate stack, a source/drain silicide region on the source/drain region, a protection layer on the source/drain silicide region, wherein a region over the gate stack is substantially free from the protection layer, and a contact etch stop layer (CESL) having a stress over the protection layer and extending over the gate stack.
摘要:
A method of forming a metal-containing gate includes forming a high-k dielectric layer over a substrate. A process using an oxygen-containing solution is provided to process the high-k dielectric layer. A metal-containing layer is formed over the high-k dielectric layer. The high-k dielectric layer and metal-containing layer are patterned, thereby defining a gate structure.
摘要:
Disclosed is a semiconductor device having a substrate, an interfacial layer formed on said substrate, a nitrogen-containing high dielectric constant (high-k) layer formed on said interfacial layer, and a metal electrode on said nitrogen-containing high-k layer. Also disclosed is a method of forming a transistor including forming on a substrate an interfacial layer comprising silicon and oxygen, depositing on the interfacial layer a high-k dielectric material, nitriding the high-k dielectric material, depositing a metal layer on the high-k dielectric material, and patterning the metal layer, the high-k dielectric material, and the interfacial layer to form a gate stack.
摘要:
A semiconductor device is disclosed that includes: a substrate; a first high-k dielectric layer; a second high-k dielectric layer formed of a different high-k material; and a metal gate. In another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming a first high-k dielectric layer above the substrate; forming a second dielectric layer of a different high-k material above the first dielectric layer; and forming a gate structure above the second dielectric layer. In yet another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming an interfacial layer above the substrate; forming a first high-k dielectric layer above the interfacial layer; performing a nitridation technique; performing an anneal; forming a second high-k dielectric layer of a different high-k material above the first dielectric layer; and forming a metal gate structure above the second dielectric layer.
摘要:
Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.
摘要:
A semiconductor structure includes a substrate, a gate stack on the substrate, a source/drain region adjacent the gate stack, a source/drain silicide region on the source/drain region, a protection layer on the source/drain silicide region, wherein a region over the gate stack is substantially free from the protection layer, and a contact etch stop layer (CESL) having a stress over the protection layer and extending over the gate stack.
摘要:
A composition and method for fabricating a semiconductor wafer containing copper is disclosed, which method includes plasma etching a dielectric layer from the surface of the wafer, plasma ashing a resist from the surface of the wafer, and cleaning the wafer surface by contacting same with a cleaning formulation, which includes the following components and their percentage by weight ranges shown: (a) from about 0.01 to 80% by weight organic solvent, (b) from about 0.01 to 30% by weight copper chelating agent, (c) from about 0.01 to 10% by weight copper inhibitor, and (d) from about 0.01 to 70% by weight water.
摘要:
A semiconductor device is disclosed that includes: a substrate; a first dielectric layer formed over the substrate and formed of a first high-k material, the first high-k material selected from the group consisting of HfO2, HfSiO, HfSiON, HfTaO, HfTiO, HfTiTaO, HfAlON, and HfZrO; a second dielectric layer formed over the first dielectric layer and formed of a second high-k material, the second high-k material being different than the first high-k material and selected from the group consisting of HfO2, HfSiO, HfSiON, HfTaO, HfTiO, HfTiTaO, HfAlON, and HfZrO; and a metal gate formed over the second dielectric layer. The first dielectric layer includes ions selected from the group consisting of N, O, and Si.
摘要:
A method of forming a semiconductor structure includes providing a semiconductor substrate, performing a hydrogen annealing to the semiconductor substrate, forming a base oxide layer after the step of hydrogen annealing, and forming a high-k dielectric layer on the base oxide layer.