摘要:
Method and structure to improve the gate coupling ratio (GCR) for manufacturing a flash memory device are provided. The method and structure include the following steps. A gate oxide layer, a first semiconductor layer, and an insulating layer are formed sequentially over a provided semiconductor substrate. An etching process is used to etch the insulating layer. A semiconductor spacer is then deposited and used as a self-aligned etching mask. After the self-aligned etching, the insulating layer is removed and an insulating stacked structure is deposited. Finally, a second semiconductor layer is deposited and etched to form the control gate region.
摘要:
An exemplary semiconductor device is described, which includes a semiconductor substrate having an active region and an isolation region. The active region has a first edge which interfaces with the isolation region. A gate structure formed on the semiconductor substrate. A spacer element abuts the gate structure and overlies the first edge. In an embodiment, the isolation region is an STI structure. An epitaxy region may be formed adjacent the spacer. In embodiments, this epitaxy region is facet-free.
摘要:
The present disclosure describes a semiconductor device including a semiconductor substrate and a gate stack disposed on the semiconductor substrate. A first spacer element is disposed on the substrate abutting the first gate stack. In an embodiment, the first spacer element includes silicon nitride. A second spacer element is adjacent the first spacer element. In an embodiment, the second spacer element includes silicon oxide. A raised source and a first raised drain is provided laterally contacting sidewalls of the second spacer element. In an embodiment, a contact directly interfaces with the second spacer element.
摘要:
A heat dissipation module is disclosed, including a fan and a fastening structure. The fastening structure includes housing and at least one fixing element. The fixing element is disposed on the sidewall of the housing and has a first protruding part extruding from the inner side of the sidewall. When the fan is assembled with the fastening structure, the first protruding part partially enters into at least one molding hole of the frame of the fan and the first protruding part is placed against the edge of the molding hole.
摘要:
The present disclosure describes a semiconductor device including a semiconductor substrate and a gate stack disposed on the semiconductor substrate. A first spacer element is disposed on the substrate abutting the first gate stack. In an embodiment, the first spacer element includes silicon nitride. A second spacer element is adjacent the first spacer element. In an embodiment, the second spacer element includes silicon oxide. A raised source and a first raised drain is provided laterally contacting sidewalls of the second spacer element. In an embodiment, a contact directly interfaces with the second spacer element.
摘要:
A method of fabricating a dynamic random access memory is provided. First, a substrate at least having a memory device area and a peripheral device area is provided, wherein an isolation structure and a capacitor are formed in the substrate of the memory device area, and an isolation structure and a well are formed in the substrate of the peripheral device area. A first oxide layer is formed on the substrate of the peripheral device area, and a passing gate isolation structure is formed on the substrate of the memory device area at the same time. A second oxide layer is formed on the substrate of the memory device area. And a first transistor is formed on the substrate of the memory device area, a passing gate is formed on the passing gate isolation structure, and a second transistor is formed on the substrate of the peripheral device area.
摘要:
A method of fabricating a dynamic random access memory is provided. First, a substrate at least having a memory device area and a peripheral device area is provided, wherein an isolation structure and a capacitor are formed in the substrate of the memory device area, and an isolation structure and a well are formed in the substrate of the peripheral device area. A first oxide layer is formed on the substrate of the peripheral device area, and a passing gate isolation structure is formed on the substrate of the memory device area at the same time. A second oxide layer is formed on the substrate of the memory device area. And a first transistor is formed on the substrate of the memory device area, a passing gate is formed on the passing gate isolation structure, and a second transistor is formed on the substrate of the peripheral device area.
摘要:
A heat dissipating module includes a fan and a heat sink. The heat sink comprises a body and at least one movable member. The body comprises a plurality of fins, at least one first slot and at least one second slot. The first and second slots are integrally formed on the body as a single piece. The movable member, rotatably or movably coupled to the first slot, comprises a pivoting portion, an operating portion, a jointing portion and at least one fixing portion. The pivoting portion is rotatably or movably received in the first slot. A first end of the operating portion connects to the pivoting portion, rotating or moving the pivoting portion. The jointing portion, at a second end of the operating portion, selectively connects to or separates from the second slot. The fixing portion protrudes from the pivoting portion, abutting and securing the fan to the heat sink.
摘要:
An improved high-voltage process is disclosed. In order to improve the performance in terms of breakdown voltage and to maintain the integrity of the STI structures, the thick gate oxide layer of the high-voltage device area is not etched back before a high-dosage ion doping process. One photo mask is therefore omitted.
摘要:
A high-voltage device structure disposed in a substrate of a first conductivity type includes a first well and a second well each of a second conductivity type, a source diffusion region and a drain diffusion region each of a first length located in the first well and the second well respectively, and a gate of a second length on the substrate surface. Since the gate of the second length is longer than the source diffusion region and the drain diffusion region of the first length, the two sides of the gate have two spare regions. Two windows are located in the spare regions.