Abstract:
According to one embodiment, a device includes a first fin structure having first to n-th semiconductor layers (n is a natural number equal to or more than 2) stacked in a first direction perpendicular to a surface of a semiconductor substrate, and extending in a second direction parallel to the surface of the semiconductor substrate, first to n-th memory cells provided on surfaces of the first to n-th semiconductor layers in a third direction perpendicular to the first and second directions respectively, and first to n-th select transistors connected in series to the first to n-th memory cells respectively.
Abstract:
A method of forming a metal pattern includes forming a catalyst adsorption layer by bringing a surface of a substrate into contact with a solution, the substrate having a base region and a plurality of protrusions provided on the base region, the base region includes a first material, the protrusions includes a second material different from the first material, the first and the second material being exposed on the surface, and the solution containing a compound having a triazine skeleton, a first functional group of any one of a silanol group and an alkoxysilyl group, and a second functional group of at least one selected from the group consisting of an amino group, a thiol group, and an azido group, forming a catalyst layer on the catalyst adsorption layer, forming a metal film on the catalyst layer by an electroless plating method, and removing the metal film on the protrusions.
Abstract:
According to one embodiment, columnar portions extend through an insulating layer and through a stacked body under the insulating layer. The columnar portions are of an insulating material different from the insulating layer. Contact portions include a first contact portion disposed inside a first terrace portion and a second contact portion disposed inside a second terrace portion. The columnar portions including a first columnar portion disposed inside the first terrace portion and a second columnar portion disposed inside the second terrace portion. A shortest distance between the first contact portion and the first columnar portion, and a shortest distance between the second contact portion and the second columnar portion are substantially equal to each other.
Abstract:
A method of forming an embedded film comprises depositing a first layer on a second layer that is disposed on a substrate and includes a material different from materials included in the first layer, forming an aperture through the first layer and into the second layer, the aperture having a side surface that includes an exposed portion of the first layer and an exposed portion of the second layer, bringing a material that includes organic molecules into contact with the exposed portion of the first layer and the exposed portion of the second layer to form a monomolecular film that covers the side surface, and forming the embedded film in the aperture with a material having a high enough affinity to the monomolecular film to substantially fill the aperture.