摘要:
Disclosed are apparatus and methods for determining overlay error in a semiconductor target. For illumination x-rays having at least one angle of incidence (AOI), a correlation model is obtained, and the correlation model correlates overlay error of a target with a modulation intensity parameter for each of one or more diffraction orders (or a continuous diffraction intensity distribution) for x-rays scattered from the target in response to the illumination x-rays. A first target is illuminated with illumination x-rays having the at least one AOI and x-rays that are scattered from the first target in response to the illumination x-rays are collected. An overlay error of the first target is determined based on the modulation intensity parameter of the x-rays collected from the first target for each of the one or more diffraction orders (or the continuous diffraction intensity distribution) and the correlation model.
摘要:
Disclosed are apparatus and methods for performing small angle x-ray scattering metrology. This system includes an x-ray source for generating x-rays and illumination optics for collecting and reflecting or refracting a portion of the generated x-rays towards a particular focus point on a semiconductor sample in the form of a plurality of incident beams at a plurality of different angles of incidence (AOIs). The system further includes a sensor for collecting output x-ray beams that are scattered from the sample in response to the incident beams on the sample at the different AOIs and a controller configured for controlling operation of the x-ray source and illumination optics and receiving the output x-rays beams and generating an image from such output x-rays.
摘要:
Structural parameters of a specimen are determined by fitting models of the response of the specimen to measurements collected by different measurement techniques in a combined analysis. Models of the response of the specimen to at least two different measurement technologies share at least one common geometric parameter. In some embodiments, a model building and analysis engine performs x-ray and optical analyses wherein at least one common parameter is coupled during the analysis. The fitting of the response models to measured data can be done sequentially, in parallel, or by a combination of sequential and parallel analyses. In a further aspect, the structure of the response models is altered based on the quality of the fit between the models and the corresponding measurement data. For example, a geometric model of the specimen is restructured based on the fit between the response models and corresponding measurement data.
摘要:
The present invention may include a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
摘要:
A metrology system is disclosed. In one embodiment, the metrology system includes a controller communicatively coupled to a reference metrology tool and an optical metrology tool, the controller including one or more processors configured to: generate a geometric model for determining a profile of a test HAR structure from metrology data from a reference metrology tool; generate a material model for determining one or more material parameters of a test HAR structure from metrology data from the optical metrology tool; form a composite model from the geometric model and the material model; measure at least one additional test HAR structure with the optical metrology tool; and determine a profile of the at least one additional test HAR structure based on the composite model and metrology data from the optical metrology tool associated with the at least one HAR test structure.
摘要:
Disclosed are apparatus and methods for determining process or structure parameters for semiconductor structures. A plurality of optical signals is acquired from one or more targets located in a plurality of fields on a semiconductor wafer. The fields are associated with different process parameters for fabricating the one or more targets, and the acquired optical signals contain information regarding a parameter of interest (POI) for a top structure and information regarding one or more underlayer parameters for one or more underlayers formed below such top structure. A feature extraction model is generated to extract a plurality of feature signals from such acquired optical signals so that the feature signals contain information for the POI and exclude information for the underlayer parameters. A POI value for each top structure of each field is determined based on the feature signals extracted by the feature extraction model.
摘要:
Methods and systems for characterizing dimensions and material properties of semiconductor devices by transmission small angle x-ray scatterometry (TSAXS) systems having relatively small tool footprint are described herein. The methods and systems described herein enable Q space resolution adequate for metrology of semiconductor structures with reduced optical path length. In general, the x-ray beam is focused closer to the wafer surface for relatively small targets and closer to the detector for relatively large targets. In some embodiments, a high resolution detector with small point spread function (PSF) is employed to mitigate detector PSF limits on achievable Q resolution. In some embodiments, the detector locates an incident photon with sub-pixel accuracy by determining the centroid of a cloud of electrons stimulated by the photon conversion event. In some embodiments, the detector resolves one or more x-ray photon energies in addition to location of incidence.
摘要:
Methods and systems for performing co-located measurements of semiconductor structures with two or more measurement subsystems are presented herein. To achieve a sufficiently small measurement box size, the metrology system monitors and corrects the alignment of the measurement spot of each metrology subsystem with a metrology target to achieve maximum co-location of the measurement spots of each metrology subsystem with the metrology target. In another aspect, measurements are performed simultaneously by two or more metrology subsystems at high throughput at the same wafer location. Furthermore, the metrology system effectively decouples simultaneously acquired measurement signals associated with each measurement subsystem. This maximizes signal information associated with simultaneous measurements of the same metrology by two or more metrology subsystems.
摘要:
An overlay metrology system may include a controller to generate optical tool error adjustments for a hybrid overlay target including optically-resolvable features and device-scale features by measuring a difference between an optical overlay measurement based on the optically-resolvable features and a device-scale overlay measurement based on the device-scale features, generate target-to-device adjustments for the hybrid overlay target based on positions of features within the device area, determine device-relevant overlay measurements for one or more locations in the device area based on at least one of the optical overlay measurement, the optical tool error adjustments, or the target-to-device adjustments, and provide overlay correctables for the device area to a lithography tool to modify exposure conditions for at least one subsequent exposure based on the device-relevant overlay measurements.
摘要:
Methods and systems for measuring structural and material characteristics of semiconductor structures based on combined x-ray reflectometry (XRR) and x-ray photoelectron spectroscopy (XPS) are presented herein. A combined XRR and XPS system includes an x-ray illumination source and x-ray illumination optics shared by both the XRR and XPS measurement subsystems. This increases throughput and measurement accuracy by simultaneously collecting XRR and XPS measurement data from the same area of the wafer. A combined XRR and XPS system improves measurement accuracy by employing XRR measurement data to improve measurements performed by the XPS subsystem, and vice-versa. In addition, a combined XRR and XPS system enables simultaneous analysis of both XRR and XPS measurement data to more accurately estimate values of one of more parameters of interest. In a further aspect, any of measurement spot size, photon flux, beam shape, beam diameter, and illumination energy are independently controlled.