Abstract:
By forming a structure wherein an oxygen ionic conductor or a mixed ionic-electronic conductor (MIEC) on a cathode surface is not covered by a molten carbonate electrolyte using an oxygen ionic conductor or a mixed ionic-electronic conductor having poor wettability on the molten carbonate electrolyte, a new electrochemical reaction site may be provided in addition to that provided by the molten carbonate electrolyte. As a result, cell performance, particularly cathode performance, can be improved even at low operation temperatures (e.g., 500-600° C.).
Abstract:
The present invention relates to a ruthenium precursor compound, and more particularly, to a ruthenium precursor compound which is for providing ruthenium to an ammonia decomposition reaction catalyst and is represented by Formula CxHyOzNmRun, wherein x is an integer of 3 to 20, y is an integer of 0 to 32, z is an integer of 0 to 20, m is an integer of 0 to 10, and n is an integer of 1 to 3. In addition, the present invention relates to an ammonia reaction catalyst using the ruthenium precursor, and to a method for preparing the ammonia reaction catalyst, and provides an ammonia reaction catalyst having an excellent ammonia conversion rate at low temperatures, thereby being capable of efficient hydrogen production.
Abstract:
Provided is a liquid hydrogen storage material including 1,1′-biphenyl and 1,1′-methylenedibenzene, the liquid hydrogen storage material including the corresponding 1,1′-biphenyl and 1,1′-methylenedibenzene at a weight ratio of 1:1 to 1:2.5. The corresponding liquid hydrogen storage material has excellent hydrogen storage capacity value by including materials having high hydrogen storage capacity, and is supplied in a liquid state, and as a result, it is possible to minimize initial investment costs and the like required when the corresponding liquid hydrogen storage material is used as a hydrogen storage material in a variety of industries.
Abstract:
The present invention relates to an unmanned aerial vehicle system having a multi-rotor type rotary wing. The unmanned aerial vehicle system having a multi-rotor type rotary wing includes a first unmanned aerial vehicle, at least one second unmanned aerial vehicle, and a bridge that connects the first unmanned aerial vehicle and the at least one second unmanned aerial vehicle to be separable from each other, wherein the at least one second unmanned aerial vehicle is moveable by the first unmanned aerial vehicle in a state where the at least one second unmanned aerial vehicle is coupled to the first unmanned aerial vehicle by the bridge without being driven, and the at least one second unmanned aerial vehicle is separable from the first unmanned aerial vehicle which is in flight.
Abstract:
Provided are a perfluorinated sulfonic acid polymer membrane having a porous surface layer, which includes a surface layer and a bottom layer present at the bottom of the surface layer, wherein the surface layer is a porous layer, and the bottom layer is non-porous dense layer, and a method for preparing the same through a solvent evaporation process.
Abstract:
Provided is poly(benzimidazole-co-benzoxazole) having polybenzimidazole to which benzoxazole units are introduced, as a polymer electrolyte material. The polymer electrolyte material has both high proton conductivity and excellent mechanical properties even when it is obtained by in-situ phosphoric acid doping. The polymer electrolyte material may substitute for the conventional phosphoric acid-doped polybenzimidazole in a polymer electrolyte membrane fuel cell, particularly in a high-temperature polymer electrolyte membrane fuel cell.
Abstract:
The present invention relates to a catalyst in which a catalytic metal is supported on a support including a single-crystalline hexagonal material, and a preparation method therefor, wherein the catalyst can be effectively used in ammonia dehydrogenation or ammonia synthesis.
Abstract:
The present specification discloses a membrane reactor comprising a reaction region; a permeate region; and a composite membrane disposed at a boundary of the reaction region and the permeate region, wherein the reaction region comprises a bed filled with a catalyst for dehydrogenation reaction, wherein the composite membrane comprises a support layer including a metal with a body-centered-cubic (BCC) crystal structure, and a catalyst layer including a palladium (Pd) or a palladium alloy formed onto the support layer, wherein ammonia (NH3) is supplied to the reaction region, the ammonia is converted into hydrogen (H2) by the dehydrogenation reaction in the presence of the catalyst for dehydrogenation reaction, and the hydrogen permeates the composite membrane and is emitted from the membrane reactor through the permeate region.
Abstract:
According to one embodiment of the present invention, there is provided a hydrogen extraction reactor, comprising a chamber including an inner space; a reaction unit which is provided to pass through the inside of the chamber and where an endothermic reaction for hydrogen extraction occurs; a heating unit which is provided to be spaced apart from the reaction unit inside the chamber and transfers heat to the inside of the chamber; and a heat transfer material which is provided between the reaction unit and the heating unit in the chamber, wherein the heat transfer material undergoes a phase transition between a gas phase and a liquid phase according to the entry and exit of heat from the heating unit or the reaction unit.