Abstract:
A sensor, in particular thermal sensor, having a silicon element and a largely self-supporting membrane layer equipped with at least one sensor element, is proposed. The membrane layer is furthermore spaced away from the silicon element by way of at least one contact column and is at least largely supported thereby. The contact column moreover makes electrical contact to the sensor element. Also proposed is a method for manufacturing a largely self-supporting membrane, a polymer layer first being deposited on a base element, patterned, and equipped with at least one cutout. The cutout is subsequently filled with a filler material, and a membrane layer is applied onto the polymer layer. Lastly, the polymer layer is removed again. The proposed method for manufacturing a largely self-supporting membrane layer is suitable in particular for constructing a sensor, in particular a thermal sensor or a thermal sensor array.
Abstract:
A filter for electric signals has a substrate, a vibrating body capable of vibrating with at least two antipodes deflected in phase opposition relative to the substrate and has electrodes connected to a signal input and a signal output for electric excitation and for detection of the vibration of the vibrating body. The electrodes for detecting the vibration, each assigned to antipodes deflected in phase opposition, are connected to two separate terminals of the signal output.
Abstract:
A method for manufacturing a micromechanical device, in particular a micromechanical vibrating-mirror device, having the following steps: making available a three-layer structure having a first layer, a second layer and a third layer, the second layer lying between the first and the third layers; etching through the first layer up to the second layer to produce an island region, lying on the second layer, which is joined to region of the first layer surrounding the island region by way of one or more connecting webs, and etching through a region of the third layer up to the second layer and removing a region of the second layer below the island region in such a way that the island region can perform movements, preferably torsional vibrations, about the one or more connecting webs, the torsional vibrations having such an amplitude that a part of the island region extends into the etched-through region of the third layer.
Abstract:
An acceleration sensing device includes a rotational speed sensor which is mounted on a substrate and detects rotational speed, at least one oscillating structure with a deflectable seismic mass, and an acceleration sensor that detects linear acceleration and has at least one additional seismic mass which is suspended on flexible elements so that it can be deflected. The seismic masses of the two sensors are deflected independently of one another.
Abstract:
A method and a system for controlling a wireless sensor network from a user interface coupled to the Internet are provided. A user accesses an Internet-based portal from the user interface and establishes a secure broadband Internet connection between a remote control module coupled to the wireless sensor network and the portal. The connection is established by manually triggering a connection between the remote control module and the portal from the remote control module.
Abstract:
A method of teaching pronunciation is provided which includes communicating by a voice portal server to a user a model word and detecting a response by the user to the voice portal server. The method also includes comparing the response word to the model word and determining a confidence level based on the comparison of the response word to the model word. The method further includes comparing an acceptance limit to the confidence level and confirming a correct pronunciation of the model word if the confidence level one of equals and exceeds the acceptance limit.
Abstract:
A sensor node arrangement in a wireless network, includes a sensor to sense information, an RF transceiver to communicate the information to at least one element of the wireless network, and a coil to establish a secondary communications channel with a handheld device via inductive coupling, the secondary communications channel used, for example, to receive, during installation of the sensor node arrangement, a node identifier of the sensor node arrangement.
Abstract:
A method and a system for controlling a wireless sensor network from a user interface coupled to the Internet are provided. A user accesses an Internet-based portal from the user interface and establishes a secure broadband Internet connection between a remote control module coupled to the wireless sensor network and the portal. The connection is established by manually triggering a connection between the remote control module and the portal from the remote control module.
Abstract:
A method for configuring a wireless network includes pointing a first end of a network configuration device at a wireless device and actuating the network configuration device to add the wireless device to the wireless network. The method may include positioning the first end in close proximity to the wireless device. A device is provided for configuring wireless networks that includes a transmitter configured to transmit at least one of an initiation signal and a connection table to a wireless device. The initiation signal is sent by the device to the wireless device to add or delete the wireless device from a network that is being configured. The connection table includes information about each wireless device that has previously been added to the network. A receiver is included in the device that is adapted to receive at least one of the connection table and a unique identifier from the wireless device. A memory is included in the device that is configured to store the connection table and electrically coupled to the transmitter and the receiver. The transmitter includes an infrared transmitter or a radio frequency transmitter and the receiver includes an infrared receiver or a radio frequency receiver. A system is provided that includes a pointing device including a connection table and a plurality of wireless network devices wirelessly couplable with the pointing device and with each other.
Abstract:
A micromirror (5), a micro-oscillating mirror in particular, having an at least largely cantilevered mirror surface (10) which may be displaced from the rest position about at least one torsional axis (17) is described. The mirror surface (10) is linked to at least one support body (11, 12) by at least two torsion beams (13, 13′), which are arranged at least approximately parallel to each other. Also described is the displacement of the micrometer from its rest position by an electrostatic or magnetic interaction.