Abstract:
In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element.
Abstract:
In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor, the material comprising a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extending a distance along a sidewall of the opening.
Abstract:
In one implementation, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A conductive element protrudes from the upper surface of the floating gate conductor into an opening. A dielectric material defines a reaction region. The reaction region overlies and extends below an upper surface of the conductive element.
Abstract:
An apparatus includes a device substrate including an array of sensors. Each sensor of the array of sensors can include a electrode structure disposed at a surface of the device substrate. The apparatus further includes a wall structure overlying the surface of the device substrate and defining an array of wells at least partially corresponding with the array of sensors. The well structure including an electrode layer and an insulative layer.
Abstract:
In one implementation, a chemical detection device is described. The device includes a chemically-sensitive field effect transistor including a floating gate conductor coupled to a gate dielectric and having an upper surface, and a sensing material on the upper surface. The device also includes a fill material defining a reaction region extending above the sensing material, the reaction region overlying and substantially aligned with the floating gate conductor.
Abstract:
A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
Abstract:
The described embodiments may provide a method of fabricating a chemical detection device. The method may comprise forming a microwell above a CMOS device. The microwell may comprise a bottom surface and sidewalls. The method may further comprise applying a first chemical to be selectively attached to the bottom surface of the microwell, forming a metal oxide layer on the sidewalls of the microwell, and applying a second chemical to be selectively attached to the sidewalls of the microwell. The second chemical may lack an affinity to the first chemical.
Abstract:
An apparatus includes a device substrate including an array of sensors. Each sensor of the array of sensors can include a electrode structure disposed at a surface of the device substrate. The apparatus further includes a wall structure overlying the surface of the device substrate and defining an array of wells at least partially corresponding with the array of sensors. The well structure including an electrode layer and an insulative layer.
Abstract:
Provided herein is a sensor comprising a substrate having a first reaction region and a second reaction region, a first electrode associated with the first reaction region, a second electrode associated with the second reaction region and a third electrode wherein the third electrode is common to both the first reaction region and the second reaction region.
Abstract:
The described embodiments may provide a method of fabricating a chemical detection device. The method may comprise forming a microwell above a CMOS device. The microwell may comprise a bottom surface and sidewalls. The method may further comprise applying a first chemical to be selectively attached to the bottom surface of the microwell, forming a metal oxide layer on the sidewalls of the microwell, and applying a second chemical to be selectively attached to the sidewalls of the microwell. The second chemical may lack an affinity to the first chemical.