Abstract:
A system for, and method of, automatically generating a hierarchical register consolidation structure. In one embodiment, the system includes: (1) a graph generator that parses a High-level Design Language (HDL) file to generate an intermediate graph containing definitions of microprocessor-accessible registers, node interrelationships and summary bits and masks associated with alarm registers, (2) a graph converter, associated with the graph generator, that selectively adds virtual elements and nodes to the intermediate graph to transform the intermediate graph into a mathematical tree and (3) a description generator, associated with the graph converter, that employs the mathematical tree to generate a static tree description in a programming language suitable for use by a device-independent condition management structure.
Abstract:
An adaptive control system for an internal combustion engine has a mixture control device and an ignition timing control device. Combustion performance, such as engine roughness is measured and mixture varied about a base value to achieve a desired performance. Ignition timing is compensated for the mixture variation by perturbing ignition timing about a base valve, detecting the slope of engine output with respect to ignition timing and varying the timing to achieve a desired slope.
Abstract:
A portable ventilator uses a Roots-type blower as a compressor to reduce both the size and power consumption of the ventilator. Various functional aspects of the ventilator are delegated to multiple subassemblies having dedicated controllers and software that interact with a ventilator processor to provide user interface functions, exhalation control and flow control servos, and monitoring of patient status. The ventilator overcomes noise problems through the use of noise reducing pressure compensating orifices on the Roots blower housing and multiple baffling chambers. The ventilator is configured with a highly portable form factor, and may be used as a stand-alone device or as a docked device having a docking cradle with enhanced interface and monitoring capabilities.
Abstract:
A ventilator device and system comprising a rotating compressor, preferably a drag compressor, which, at the beginning of each inspiratory ventilation phase, is accelerated to a sufficient speed to deliver the desired inspiratory gas flow, and is subsequently stopped or decelerated to a basal flow level to permit the expiratory ventilation phase to occur. The ventilator device is small and light weight enough to be utilized in portable applications. The ventilator device is power efficient enough to operate for extended periods of time on internal or external batteries. Also provided is an oxygen blending apparatus which utilizes solenoid valves having specific orifice sizes for blending desired amounts of oxygen into the inspiratory gas flow. Also provided is an exhalation valve having an exhalation flow transducer which incorporates a radio frequency data base to provide an attendant controller with specific calibration information for the exhalation flow transducer.
Abstract:
A portable ventilator uses a Roots-type blower as a compressor to reduce both the size and power consumption of the ventilator. Various functional aspects of the ventilator are delegated to multiple subassemblies having dedicated controllers and software that interact with a ventilator processor to provide user interface functions, exhalation control and flow control servos, and monitoring of patient status. The ventilator overcomes noise problems through the use of noise reducing pressure compensating orifices on the Roots blower housing and multiple baffling chambers. The ventilator is configured with a highly portable form factor, and may be used as a stand-alone device or as a docked device having a docking cradle with enhanced interface and monitoring capabilities.
Abstract:
For use with a processor employing a hierarchical register consolidation structure (HRCS), a condition management system and method of operation thereof. In one embodiment, the system includes a condition management structure (CMS) that abstracts groups of status indicators associated with the HRCS into a tree of hierarchical container objects and element objects. Each of the container objects is associated with at least one of the element objects and linked to a single parent object, and each of the element objects configured to represent at least one of the status indicators and linked to a single child object. The system further includes an abstraction retrieval subsystem that employs the CMS to traverse the HRCS to determine a condition of at least one of the status indicators, and an abstraction management subsystem that employs the CMS to control a propagation of selected ones of the status indicators through the HRCS.
Abstract:
Manzamines, administered either intraperitoneally or orally, have been found to prolong survival and inhibit parasitemia in erythrocytic stage malaria. Thus, manzamines can be used for both prophylaxis and treatment. Manzamine A is a preferred compound for use in prophylaxis or treatment.
Abstract:
Disclosed is a method and apparatus for controlling an internal combustion engine having two inputs and one output affected by both inputs. One input is perturbed and the effect on the output is compared with a desired effect on the output. One or the other input is varied until the actual affect on the output is the same as the desired effect on output. In one embodiment, ignition timing is periodically varied and the effect upon engine speed is detected. The detected output variations (slope) are compared with predetermined output variations for the existing engine speed and load demand. Any error is used to correct fueling to the engine. Preferred embodiments include unique slop determination as well as a unique interpolation method of determining the engine input from a fixed schedule. In a further embodiment the error corrects the ignition timing directly and corrects fueling indirectly at a slower rate. Further embodiments control air/fuel ratio, engine roughness, exhaust gas recirculation, for individual cylinders or groups of cylinders or the engine as a whole, depending upon the change in engine output in response to the variation in engine input.
Abstract:
An adaptive control system and method is provided for a power producing engine having at least one control parameter which affects an engine output, where the engine has a drivetrain combination having at least one resonant frequency. A base value is established for one control parameter in accordance with engine operating conditions. The one control parameter is preferably perturbed about the base value in accordance with a perturbation waveform having a frequency greater than the at least one resonant frequency of the drivetrain. The perturbation waveform has a cycle including a first part and a second part. A positive perturbation is applied to the perturbed parameter during the first part of each cycle and a negative perturbation is applied to the perturbed parameter during the second part of each cycle. The engine output is monitored and the slope of the engine output is calculated with respect to at least one control parameter for the engine so as to obtain a desired value of the slope. In a preferred embodiment the perturbation frequency is greater than the resonant frequency of the drivetrain.
Abstract:
Disclosed is a method and apparatus for controlling an internal combustion engine having two inputs and one output affected by both inputs. One input is perturbed and the effect on the output is compared with a desired effect on the output. The other input is varied until the actual affect on the output is the same as the desired effect on output. In one embodiment, ignition timing is periodically varied and the effect upon engine speed is detected. The detected output variations are compared with predetermined output variations for the existing engine speed and load demand. Any error is used to correct fueling to the engine. In a further embodiment the error corrects the ignition timing directly and corrects fueling indirectly at a slower rate. Further embodiments control air/fuel ratio, engine roughness, exhaust gas recirculation, for individual cylinders or groups of cylinders or the engine as a whole, depending upon the change in engine output in response to the variation in engine input.