Abstract:
A process for preparing coating compositions of a commingled hydrogel of a polyurethane-polyurea polymer hydrogel and a poly(N-vinylpyrrolidone) polymer hydrogel; a process for making materials composed of a polymeric plastic or rubber substrate or a metallic substrate, with a coating of the commingled hydrogel thereon; and a process for making medical devices with a coating of the commingled hydrogel thereon, are disclosed. The coating compositions tenaciously adhere to the substrate materials and medical devices to which they are applied due to bonding of a tie coat to a reactive substrate surface and due to the commingling of the two hydrogel components. The coating compositions and coated materials and medical devices are non-toxic and biocompatible, making them ideally suited for use in applications such as for catheters, catheter balloons and stents. In such applications, the coating compositions, coated materials, and coated medical devices made therefrom demonstrate low coefficients of friction in contact with body fluids, especially blood, as well as a high degree of wear permanence over prolonged use. The commingled hydrogel coatings are capable of being dried to facilitate storage of the devices to which they have been applied, and can be instantly reactivated for later use by exposure to water.
Abstract:
This invention relates to a drug delivery device having a hollow tube which is configured to serve as a guide wire for intraluminal procedures. The distal portion of the tube has at least one opening which has a diameter suitable for the infusion of a drug formulation therethrough. The tube is preferably formed from a superelastic material such as nickel-titanium alloy. This invention also relates to various methods of using this drug delivery device in thrombolytic and other intraluminal procedures.
Abstract:
Catheters for drug delivery or for both dilatation and drug delivery are provided with a guide wire lumen terminating within the catheter shaft and having an opening through the catheter shaft to enable a guide wire to exit the catheter shaft substantially distal to the proximal end of the catheter. In one embodiment, drug delivery ports are provided between occlusion balloons. In another embodiment, a dilatation balloon is also provided between the occlusion balloons. In another embodiment, a double layered balloon is provided to simultaneously dilatate the stenosis and deliver medication to the site. Alternatively, a balloon can be provided which only delivers medication.
Abstract:
A balloon catheter which is assembled by a process of selectively concentrating laser energy along an annular fusion bond site at contiguous surface portions of a length of catheter tubing and a shaft or neck portion of a dilatation balloon. The laser energy wavelength, and the polymeric materials of the balloon and catheter, are matched for high absorption of the laser energy to minimize conductive heat transfer in axial directions away from the bond site. This minimizes crystallization and stiffening in regions near the bond site, permitting fusion bonds to be located close to the proximal and distal cones of the dilatation balloon while preserving the soft, pliant quality of the cones.
Abstract:
A system and method to position and orient an excised breast tissue specimen on a support structure in a duplicate anatomic orientation relative to the operated breast is provided. One embodiment of the system includes an anatomically representative map of the breast under investigation. The system allows a surgeon to suture, ink, or otherwise fix the excised specimen on the map in accordance to its original position and orientation in the operated breast or organ. A radiogram of the excised specimen can be taken that shows the location of calcifications on a grid with radiopaque markers. The system allows a pathologist to cut through the specimen utilizing the map as a template in order to perform histological analysis and correlate the position and orientation of each slice to its anatomic position in the breast and thereby direct a precise and anatomically accurate re-excision by the surgeon if so required.
Abstract:
The present invention provides improved devices, methods, and kits for inhibiting restenosis and hyperplasia after intravascular intervention. In particular, the present invention provides controlled immunomodulator delivery in combination with ionizing radiation to selected locations within a patient's vasculature to reduce and/or inhibit restenosis and hyperplasia rates with increased efficacy. In one embodiment, the combination radiation and immunomodulator delivery catheter for inhibiting hyperplasia comprises a catheter body having a proximal end and distal end, an ionizing radiation source coupleable to the catheter body for applying a radiation dose to a body lumen, and a porous material, matrix, membrane, barrier, coating, infusion lumen, stent, graft, or reservoir for releasing an immunomodulator to the body lumen.
Abstract:
Apparatus and methods are provided for applying a radially uniform radiation dose to an intravascular treatment region to inhibit hyperplanes, and specifically to reduce “candy-wrapper” ends, following intravascular intervention. An embodiment of the apparatus comprises a catheter body having a proximal end and a distal end, a pair of axially spaced apart radiation shields on the catheter body, and a radiation source. The radiation source applies a radiation dose which is substantially uniform in a radial direction over an entire distance between the axially spaced apart shields.
Abstract:
A thrombolytic filtration and drug delivery catheter is disclosed comprising a shaft which longitudinal ribs. The ribs are compressed while being advanced to the site of interest and are released at the site, flaring to a diameter greater than the diameter of the shaft. The ribs can be compressed by a sleeve or thread, for example. Drugs or other agents can be delivered through lumens in the shaft and ribs, out through ports in the ribs. Preferably, the ports are positioned to deliver the drugs or other agents between the ribs and within the region defined by the ribs.
Abstract:
A balloon catheter having a perfusion lumen communicating with a blood vessel, and a magnetically driven impeller disposed in the perfusion lumen to increase blood flow through the catheter and the arteries.
Abstract:
A process for the preparation of slippery, hydrophilic polyurethane hydrogel coating compositions, and materials composed of a polymeric plastic or rubber substrate or a metal substrate with a coating of a slippery, hydrophilic polyurethane hydrogel thereon, such that the coating composition tenaciously adheres to the substrate, are disclosed. The coating compositions and coated materials are non-toxic and biocompatible, and are ideally suited for use on medical devices, particularly, catheters, catheter balloons and stents. The coating compositions, coated materials and coated devices demonstrate low coefficients of friction in contact with body fluids, especially blood, as well as a high degree of wear permanence over prolonged use of the device. The hydrogel coating compositions are capable of being dried to facilitate storage of the devices to which they have been applied, and can be instantly reactivated for later use by exposure to water.